The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307077 Let a(1)=3; for n > 1, let a(n) be the least positive integer k such that k > a(n-1), a(1)^2 + ... + a(n-1)^2 + k^2 is a square and the Pythagorean triple sqrt(a(1)^2 + ... + a(n-1)^2), a(n), sqrt(a(1)^2 + ... + a(n)^2) is primitive. 0
 3, 4, 12, 84, 132, 12324, 89892, 2447844, 28350372, 295742791596, 171480834409712412, 633511848768467916, 1616599508725767821225590810932, 4158520496012961741299012805876, 115366949386695884000892071516523067413910188 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA The numbers are generated by using the well-known characterization of primitive Pythagorean triples, namely (a,b,c) is a PPT iff there are positive integers j,k of opposite parity with j > k, and gcd(j,k)=1 such that a = j^2 - k^2, b = 2jk, c = j^2 + k^2. PROG (PARI) lista(NN) = s=9; k=3; print1(k); for(n=1, NN-1, v=divisors(s); j=#v; while(v[j]*(v[j]+2*k)>s, j--); while(gcd((s-v[j]^2)/(2*v[j]), s)!=1, j--); print1(", ", k=(s-v[j]^2)/(2*v[j])); s+=k^2); \\ Jinyuan Wang, May 31 2019 CROSSREFS Cf. A018930, A127689. Sequence in context: A059792 A018930 A127689 * A330068 A127690 A092417 Adjacent sequences:  A307074 A307075 A307076 * A307078 A307079 A307080 KEYWORD nonn AUTHOR Rohan Hemasingha, May 30 2019 EXTENSIONS a(14)-a(15) from Jinyuan Wang, Jun 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 03:01 EDT 2022. Contains 357051 sequences. (Running on oeis4.)