login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127690
a(1)=3; for n>1, a(n) is such that a(1)^2+...+a(n)^2 = (1+a(n))^2.
3
3, 4, 12, 84, 3612, 6526884, 21300113901612, 226847426110843688722000884, 25729877366557343481074291996721923093306518970391612, 331013294649039928396936390888878360035026305412754995683702777533071737279144813617823976263475290370884
OFFSET
1,1
LINKS
Sierpinski W., Elementary theory of numbers, Monografie Matematyczne 42 (1964), Chapter II, p. 63.
FORMULA
For n>2, a(n) = (a(1)^2 + a(2)^2 + ... + a(n-1)^2 - 1)/2 = ((a(n-1) + 1)^2 - 1)/2. - Max Alekseyev, Nov 23 2012
a(n) = A053630(n-1)-1 for n>=2. - R. J. Mathar, Apr 23 2007
EXAMPLE
a(2)=4 because (3^2+4^2=5^2) and (4+1=5), a(3)=12 because (3^2+4^2+12^2=13^2) and (12+1=13) a(5)= 3612 because (3^2+4^2+12^2+84^2+3612^2=3613^2) and (3612+1=3613) etc.
MATHEMATICA
a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 5, While[ ! ((IntegerQ[Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]]]) && (Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]] == k + 1)), k++ ]; AppendTo[a, k]]; a
a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 12, s2 = Plus @@ (a^2); t = Reduce[{y^2 + s2 == (y + 1)^2}, y, Integers]; t = t /. {Equal -> Rule}; k = y /. t; AppendTo[a, k]]; a (* Daniel Huber *)
CROSSREFS
Apart from the initial term, the sequence is the same as A053631.
Sequence in context: A127689 A307077 A330068 * A092417 A071543 A242648
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 23 2007, Jan 29 2007
STATUS
approved