The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053631 Pythagorean spiral: a(n-1)+1, a(n) and a(n)+1 are the sides of a right triangle (a primitive Pythagorean triangle). 5
 2, 4, 12, 84, 3612, 6526884, 21300113901612, 226847426110843688722000884, 25729877366557343481074291996721923093306518970391612, 331013294649039928396936390888878360035026305412754995683702777533071737279144813617823976263475290370884 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS To derive a list of Pythagorean triples from this sequence, we note that the difference between the second and the third terms in the Pythagorean triple is 1 and that the last term of the previous triple gives us the first term in the next triple. Therefore the sequence is completely determined by the initial triple. A053631 gives us a list of Pythagorean triples beginning with (3,4,5), since a(1)=2. Using any initial value h>1, (2h-1,2h^2-2h,2h^2-2h+1) forms a Pythagorean triple; we can use b(1)=2h-1 and the recursive formula b(n)=b(n-1)^2-b(n-1)+1 for n>1, we can create infinitely many of spirals of this type. - Haoqi Chen, Teena Carroll LINKS Robert Israel, Table of n, a(n) for n = 1..13 FORMULA a(1)=2; for n >= 2: a(n) = a(n-1) + a(n-1)^2/2 = A046092(a(n-1)/2). a(n) = A053630(n) - 1. - Robert G. Wilson v, Jul 29 2014 a(n) = 2*A007018(n-1). - Ivan Neretin, Jul 26 2015 EXAMPLE For n=3, a(n-1) = 4, so we want a right triangle with sides 4 + 1 = 5, a(n), and a(n)+1.  Solving (x+1)^2 = x^2 + 5^2 gives x = 12, so a(3) = 12. - Michael B. Porter, Jul 19 2016 MAPLE a[1]:= 2: for n from 2 to 10 do a[n]:= a[n-1] + a[n-1]^2/2 od: seq(a[i], i=1..10); # Robert Israel, Jul 08 2015 MATHEMATICA NestList[# + #^2/2 &, 2, 9] (* Robert G. Wilson v, Dec 12 2012 *) PROG (Maxima) a[1]:2\$ a[n]:=a[n-1] + (a[n-1]^2)/2\$ A053631(n):=a[n]\$ makelist(A053631(n), n, 1, 10); /* Martin Ettl, Nov 08 2012 */ (PARI) main(size)={v=vector(size); v[1]=2; for(n=2, size, v[n]=v[n-1]+v[n-1]^2/2); return(v)} /* Anders HellstrÃ¶m, Jul 08 2015 */ CROSSREFS Apart from the initial term, the sequence is the same as A127690. Cf. A046092 Sequence in context: A144295 A119489 A217757 * A319634 A217041 A120618 Adjacent sequences:  A053628 A053629 A053630 * A053632 A053633 A053634 KEYWORD nonn AUTHOR Henry Bottomley, Mar 21 2000 EXTENSIONS Corrected and extended by James A. Sellers, Mar 22 2000 a(1) = 2 added by Zak Seidov, Apr 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 2 23:47 EDT 2020. Contains 333194 sequences. (Running on oeis4.)