login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).
4

%I #19 May 20 2021 04:44:55

%S 1,1,3,1,2,7,1,2,4,15,1,2,3,8,31,1,2,3,5,16,63,1,2,3,4,10,32,127,1,2,

%T 3,4,6,21,64,255,1,2,3,4,5,12,43,128,511,1,2,3,4,5,7,28,86,256,1023,1,

%U 2,3,4,5,6,14,64,171,512,2047,1,2,3,4,5,6,8,36,136,341,1024,4095

%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).

%H Seiichi Manyama, <a href="/A307078/b307078.txt">Antidiagonals n = 0..139, flattened</a>

%F A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+1,k*j+1).

%F A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i,k*j) * binomial(n-i,k*j).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 3, 2, 2, 2, 2, 2, 2, 2, 2, ...

%e 7, 4, 3, 3, 3, 3, 3, 3, 3, ...

%e 15, 8, 5, 4, 4, 4, 4, 4, 4, ...

%e 31, 16, 10, 6, 5, 5, 5, 5, 5, ...

%e 63, 32, 21, 12, 7, 6, 6, 6, 6, ...

%e 127, 64, 43, 28, 14, 8, 7, 7, 7, ...

%e 255, 128, 86, 64, 36, 16, 9, 8, 8, ...

%e 511, 256, 171, 136, 93, 45, 18, 10, 9, ...

%t T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* _Amiram Eldar_, May 20 2021 *)

%Y Columns 1-6 give A126646, A000079, A024494(n+1), A038504(n+1), A133476(n+1), A119336.

%Y Cf. A306846, A306915, A307079.

%K nonn,tabl

%O 0,3

%A _Seiichi Manyama_, Mar 22 2019