login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024494
a(n) = C(n,1) + C(n,4) + ... + C(n, 3*floor(n/3) + 1).
17
1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365, 2731, 5462, 10923, 21845, 43690, 87381, 174763, 349526, 699051, 1398101, 2796202, 5592405, 11184811, 22369622, 44739243, 89478485, 178956970, 357913941, 715827883, 1431655766, 2863311531, 5726623061, 11453246122
OFFSET
1,2
COMMENTS
M^n * [1,0,0] = [A024493(n), A024495(n), a(n)], where M is a 3 X 3 matrix [1,1,0; 0,1,1; 1,0,1]. Sum of terms = 2^n. Example: M^5 * [1,0,0] = [11, 11, 10], sum = 2^5 = 32. - Gary W. Adamson, Mar 13 2009
Let M be any endomorphism on any vector space such that M^3 = 1 (identity). Then (1+M)^n = A024493(n) + a(n)*M + A024495(n)*M^2. - Stanislav Sykora, Jun 10 2012
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.
FORMULA
3*a(n) = 2^n + 2*cos( (n-2)*Pi/3 )) = 2^n - A057079(n+2).
G.f.: x*(1-x)/((1-2*x)*(1-x+x^2)). - Paul Barry, Feb 11 2004
a(n) = Sum_{k=0..n} 2^k*2*sin(-Pi*(n-k)/3 + Pi/3)/sqrt(3) (offset 0). - Paul Barry, May 18 2004
G.f.: (x*(1-x^2)*(1-x^3)/(1-x^6))/(1-2*x). - Michael Somos, Feb 14 2006
a(n+1) - 2*a(n) = A010892(n+1). - Michael Somos, Feb 14 2006
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). - Paul Curtz, Nov 20 2007
Equals binomial transform of (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, ...). - Gary W. Adamson, Jul 03 2008
Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) + z(n), y(n+1) = y(n) + x(n), z(n+1) = z(n) + y(n). Then a(n) = y(n). - Stanislav Sykora, Jun 10 2012
MATHEMATICA
nn=20; a=1/(1-x); Drop[CoefficientList[Series[a x /(1-x-x^3 a^2), {x, 0, nn}], x], 1] (* Geoffrey Critzer, Dec 22 2013 *)
LinearRecurrence[{3, -3, 2}, {1, 2, 3}, 40] (* G. C. Greubel, Jan 23 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n, 3*k+1)) /* Michael Somos, Feb 14 2006 */
(PARI) a(n)=if(n<0, 0, ([1, 0, 1; 1, 1, 0; 0, 1, 1]^n)[2, 1]) /* Michael Somos, Feb 14 2006 */
(Magma) [n le 3 select n else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 23 2023
(SageMath)
def A024494(n): return (1/3)*(2^n -chebyshev_U(n, 1/2) +2*chebyshev_U(n-1, 1/2))
[A024494(n) for n in range(1, 41)] # G. C. Greubel, Jan 23 2023
CROSSREFS
See A131708 for another version.
Sequence in context: A300550 A014626 A132418 * A131708 A002991 A218532
KEYWORD
nonn,easy
STATUS
approved