login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024493 a(n) = C(n,0) + C(n,3) + ... + C(n,3[n/3]). 32
1, 1, 1, 2, 5, 11, 22, 43, 85, 170, 341, 683, 1366, 2731, 5461, 10922, 21845, 43691, 87382, 174763, 349525, 699050, 1398101, 2796203, 5592406, 11184811, 22369621, 44739242, 89478485, 178956971, 357913942, 715827883, 1431655765, 2863311530 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

First differences of A131708. First differences give A024495. - Paul Curtz, Nov 18 2007

a(n) = upper left term of X^n, where X = the 4 X 4 matrix [1,0,1,0; 1,1,0,0; 0,1,1,1; 0,0,0,1]. - Gary W. Adamson, Mar 01 2008

M^n * [1,0,0] = [a(n), A024495(n), A024494(n)], where M = a 3 X 3 matrix [1,1,0; 0,1,1; 1,0,1]. Sum of terms = 2^n. Example: M^5 * [1,0,0] = [11, 11, 10], sum = 2^5 = 32. - Gary W. Adamson, Mar 13 2009

Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1+M)^n = a(n) + A024494(n)*M + A024495(n)*M^2. - Stanislav Sykora, Jun 10 2012

Counts closed walks of length (n) at the vertices of a unidirectional triangle, containing a loop at each vertex. - David Neil McGrath, Sep 15 2014

{A024493, A131708, A024495} is the difference analog of the hyperbolic functions of order 3, {h_1(x), h_2(x), h_3(x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 08 2017

REFERENCES

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.

Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

P. H. Daus, Note on Sums Involving Binomial Coefficients, National Mathematics Magazine, volume 10, number 5, February 1936, pages 165-166.

John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.

Arnold T. Saunders, Jr., Random Recursive Tree Evolution Algorithms: Identification and Characterization of Classes of Deletion Rules, Ph. D. thesis, The George Washington University, ProQuest Dissertations Publishing (2020) 27830773.

Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.

Index entries for linear recurrences with constant coefficients, signature (3,-3,2).

FORMULA

a(n) = (1/3)*(2^n+2*cos( n*Pi/3 )).

G.f.: (1-x)^2/((1-2*x)*(1-x+x^2)) = (1-2*x+x^2)/(1-3*x+3*x^2-2*x^3). - Paul Barry, Feb 11 2004

a(n) = (1/3)*(2^n+b(n)) where b(n) is the 6-periodic sequence {2, 1, -1, -2, -1, 1}. - Benoit Cloitre, May 23 2004

Binomial transform of 1/(1-x^3). G.f.: (1-x)^2/((1-x)^3-x^3) = x/(1-x-2*x^2)+1/(1+x^3); a(n) = Sum_{k=0..floor(n/3)} binomial(n, 3*k); a(n) = Sum_{k=0..n} binomial(n,k)*(cos(2*Pi*k/3+Pi/3)/3+sin(2*Pi*k/3+Pi/3)/sqrt(3)+1/3); a(n) = A001045(n)+sqrt(3)*cos(Pi*n/3+Pi/6)/3+sin(Pi*n/3+Pi*/6)/3+(-1)^n/3. - Paul Barry, Jul 25 2004

a(n) = Sum_{k=0..n} binomial(n, 3*(n-k)). - Paul Barry, Aug 30 2004

G.f.: ((1-x)*(1-x^2)*(1-x^3)/((1-x^6)*(1-2*x)). - Michael Somos, Feb 14 2006

a(n+1)-2a(n) = -A010892(n). - Michael Somos, Feb 14 2006

E.g.f.: exp(x)*A(x) where A(x) is the e.g.f. for A079978. - Geoffrey Critzer, Dec 27 2011

Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) + z(n), y(n+1) = y(n) + x(n), z(n+1) = z(n) + y(n). Then a(n) = x(n). - Stanislav Sykora, Jun 10 2012

E.g.f.: (exp(2*z)+2*cos(z*sqrt(3/4))*exp(z/2))/3. - Peter Luschny, Jul 10 2012

Recurrence: a(0) = 1, a(1) = 1, a(2) = 1, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). - Christopher Hunt Gribble, Mar 25 2014

a(m+k) = a(m)*a(k) + A131708(m)*A024495(k) + A024495(m)*A131708(k). - Vladimir Shevelev, Jun 08 2017

MAPLE

A024493_list := proc(n) local i; series((exp(2*z)+2*cos(z*sqrt(3/4))*exp(z/2)) /3, z, n+2): seq(i!*coeff(%, z, i), i=0..n) end: A024493_list(33); # Peter Luschny, Jul 10 2012

seq((3*(-1)^(floor((n+1)/3))+(-1)^n+2^(n+1))/6, n=0..33); # Peter Luschny, Jun 14 2017

MATHEMATICA

nn = 18; a = Sum[x^(3 i)/(3 i)!, {i, 0, nn}]; b = Exp[x]; Range[0, nn]! CoefficientList[Series[a b , {x, 0, nn}], x]  (* Geoffrey Critzer, Dec 27 2011 *)

Differences[LinearRecurrence[{3, -3, 2}, {0, 1, 2}, 40]] (* Harvey P. Dale, Nov 27 2013 *)

PROG

(PARI) a(n)=sum(i=0, n, sum(j=0, n, if(n-i-3*j, 0, n!/(i)!/(3*j)!)))

(PARI) a(n)=sum(k=0, n\3, binomial(n, 3*k)) /* Michael Somos, Feb 14 2006 */

(PARI) a(n)=if(n<0, 0, ([1, 0, 1; 1, 1, 0; 0, 1, 1]^n)[1, 1]) /* Michael Somos, Feb 14 2006 */

(MAGMA) I:=[1, 1, 1]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jun 12 2017

CROSSREFS

Row sums of A098172.

Cf. A024494, A094715, A094717.

Sequence in context: A091357 A309950 A129715 * A130781 A071015 A293362

Adjacent sequences:  A024490 A024491 A024492 * A024494 A024495 A024496

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 05:45 EDT 2021. Contains 343872 sequences. (Running on oeis4.)