login
A309950
G.f.: Product_{j>=1} (1 + p(x^j)), where p(x) is the g.f. of A000040.
2
1, 2, 5, 11, 22, 43, 78, 140, 238, 405, 665, 1077, 1710, 2685, 4140, 6336, 9551, 14280, 21117, 30994, 45051, 65046, 93170, 132600, 187439, 263449, 367999, 511409, 706833, 972257, 1330929, 1813846, 2461090, 3325803, 4476276, 6002036, 8018216, 10674307, 14161656
OFFSET
0,2
LINKS
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
add(b(j, 1)*(t-> b(t, min(t, i-1)))(n-i*j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1,
Prime[n], Sum[b[j, 1]*Function[t,
b[t, Min[t, i-1]]][n-i*j], {j, 0, n/i}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 24 2019
STATUS
approved