login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309955
a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.
3
1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
OFFSET
0,2
LINKS
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
(h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..31);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n],
Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 24 2019
STATUS
approved