login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226996
Number of lattice paths from (0,0) to (n,n) consisting of steps U=(1,1), H=(1,0) and S=(0,1) such that the first step leaving and the last step joining the diagonal (if any) is an H step.
3
1, 1, 2, 10, 59, 339, 1908, 10660, 59493, 332469, 1861910, 10451086, 58793535, 331434215, 1871929768, 10590886536, 60014622089, 340566437545, 1935134951402, 11008701669202, 62694973984771, 357406440776891, 2039344466594972, 11646264778160300, 66561506740727149
OFFSET
0,3
LINKS
FORMULA
G.f.: sqrt(x^2-6*x+1)/(4*(x-1)^2)+1/(4*sqrt(x^2-6*x+1))-1/(2*(x-1)). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(16*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 27 2013
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: U.
a(2) = 2: HSSH, UU.
a(3) = 10: HHSSSH, HSHSSH, HSSHSH, HSSHU, HSSSHH, HSSUH, HSUSH, HUSSH, UHSSH, UUU.
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 10][n+1],
((8*n^3-35*n^2+49*n-21)*a(n-1) -(2*n-3)*(7*n^2-21*n+15)*a(n-2)
+(8*n^3-37*n^2+55*n-27)*a(n-3) -(n-3)*(n-1)^2*a(n-4))
/ (n*(n-2)^2))
end:
seq(a(n), n=0..30);
MATHEMATICA
CoefficientList[Series[Sqrt[x^2-6*x+1]/(4*(x-1)^2)+1/(4*Sqrt[x^2-6*x+1])-1/(2*(x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 27 2013 *)
CROSSREFS
Cf. A001850 (unrestricted paths), A006318 (subdiagonal paths), A226994, A226995.
Sequence in context: A218944 A124964 A026132 * A370247 A370273 A309955
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 26 2013
STATUS
approved