OFFSET
0,2
COMMENTS
a(n) is also the n-th order truncated expansion in x and y of 1/(1-x*y+x+y) evaluated at x=1, y=1 (see Mathematica code). - Benedict W. J. Irwin, Oct 06 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/(2-2*x) + 1/(2*sqrt(1-6*x+x^2)).
a(n) = 1/2 + LegendreP(n, 3)/2. - Benedict W. J. Irwin, Oct 06 2016
a(n) ~ sqrt(3*sqrt(2) + 4) * (3 + 2*sqrt(2))^n / (4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 07 2016
a(n) = 1 + Sum_{k=1..n} binomial(n,k)^2 * 2^(k-1). - Ilya Gutkovskiy, Nov 15 2021
a(n) = 1 + A047665(n). - Alois P. Heinz, Nov 15 2021
EXAMPLE
a(0) = 1: the empty path.
a(1) = 2: HS, U.
a(2) = 7: HHSS, HSHS, HSSH, HSU, HUS, UHS, UU.
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(2*n-1)+1,
((n-2)*(2*n-1) *a(n-3) -(7*n-4)*(2*n-3) *a(n-2)
+(2*n-1)*(7*n-10) *a(n-1))/ (n*(2*n-3)))
end:
seq(a(n), n=0..25);
MATHEMATICA
Table[CoefficientList[Series[1/(1-x*y+x+y), {x, 0, n}, {y, 0, n}], z][[1]] /.x -> 1 /. y -> 1, {n, 0, 10}] (* Benedict W. J. Irwin, Oct 06 2016 *)
PROG
(PARI) a(n) = 1/2 + pollegendre(n, 3)/2; \\ Michel Marcus, Oct 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 26 2013
STATUS
approved