login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226994
Number of lattice paths from (0,0) to (n,n) consisting of steps U=(1,1), H=(1,0) and S=(0,1) such that the first step leaving the diagonal (if any) is an H step.
5
1, 2, 7, 32, 161, 842, 4495, 24320, 132865, 731282, 4048727, 22523360, 125797985, 704966810, 3961924127, 22321190912, 126027618305, 712917362210, 4039658528935, 22924714957472, 130271906898721, 741188107113962, 4221707080583087, 24070622500965632
OFFSET
0,2
COMMENTS
a(n) is also the n-th order truncated expansion in x and y of 1/(1-x*y+x+y) evaluated at x=1, y=1 (see Mathematica code). - Benedict W. J. Irwin, Oct 06 2016
LINKS
FORMULA
G.f.: 1/(2-2*x) + 1/(2*sqrt(1-6*x+x^2)).
a(n) = A001850(n) - A047665(n).
a(n) = 1/2 + LegendreP(n, 3)/2. - Benedict W. J. Irwin, Oct 06 2016
a(n) ~ sqrt(3*sqrt(2) + 4) * (3 + 2*sqrt(2))^n / (4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 07 2016
a(n) = Sum_{k=0..n} (-1)^k * A182626(k). - J. Conrad, Apr 08 2018
a(n) = 1 + Sum_{k=1..n} binomial(n,k)^2 * 2^(k-1). - Ilya Gutkovskiy, Nov 15 2021
a(n) = 1 + A047665(n). - Alois P. Heinz, Nov 15 2021
EXAMPLE
a(0) = 1: the empty path.
a(1) = 2: HS, U.
a(2) = 7: HHSS, HSHS, HSSH, HSU, HUS, UHS, UU.
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(2*n-1)+1,
((n-2)*(2*n-1) *a(n-3) -(7*n-4)*(2*n-3) *a(n-2)
+(2*n-1)*(7*n-10) *a(n-1))/ (n*(2*n-3)))
end:
seq(a(n), n=0..25);
MATHEMATICA
Table[CoefficientList[Series[1/(1-x*y+x+y), {x, 0, n}, {y, 0, n}], z][[1]] /.x -> 1 /. y -> 1, {n, 0, 10}] (* Benedict W. J. Irwin, Oct 06 2016 *)
PROG
(PARI) a(n) = 1/2 + pollegendre(n, 3)/2; \\ Michel Marcus, Oct 06 2016
CROSSREFS
Column k=2 of A330942.
Cf. A001850 (unrestricted paths), A006318 (subdiagonal paths), A047665, A182626, A226995, A226996.
Sequence in context: A168494 A181376 A183951 * A369267 A369298 A379080
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 26 2013
STATUS
approved