login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181376
Total number of n-digit numbers requiring 2 positive cubes in their representation as a sum of cubes.
8
2, 7, 32, 161, 736, 3416, 15976, 74295, 345334, 1605089, 7455698, 34623338, 160759047, 746318897, 3464508951, 16081935250, 74648713406
OFFSET
1,1
COMMENTS
A181354(n) + a(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).
FORMULA
a(n) = A181375(n)-A181375(n-1).
EXAMPLE
a(1) = 2 from 1+1=2, 1+8=9.
a(2) = 7 from 8+8=16, 1+27=28, 35, 54, 65, 72, 91.
MATHEMATICA
Table[Length[c = Table[j^3, {j, (10^n - 1)^(1/3)}];
Select[Union[Flatten[Outer[Plus, c, c]]],
IntervalMemberQ[Interval[{10^(n - 1), 10^n - 1}], #] &]], {n, 10}] (* Robert Price, Apr 18 2019 *)
PROG
(PARI) a(n)=my(N=10^n, Nn=N/10, v=List(), x3, t); sum(x=sqrtnint(Nn\2, 3), sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), t=x3+y^3; t>=Nn && !ispower(t, 3) && listput(v, t))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013
CROSSREFS
Cf. A003325.
Sequence in context: A047850 A201373 A168494 * A183951 A226994 A369267
KEYWORD
nonn,more,base
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(6)-a(11) from Charles R Greathouse IV, Oct 16 2013
a(12) from Lars Blomberg, Jan 15 2014
a(13)-a(17) from Hiroaki Yamanouchi, Jul 13 2014
STATUS
approved