login
A181354
Number of n-digit perfect cubes.
18
2, 2, 5, 12, 25, 53, 116, 249, 535, 1155, 2487, 5358, 11545, 24871, 53584, 115444, 248715, 535841, 1154435, 2487154, 5358411, 11544347, 24871542, 53584111, 115443470, 248715414, 535841116, 1154434691, 2487154143, 5358411166
OFFSET
1,1
COMMENTS
a(n) is also the total number of n-digit numbers requiring 1 positive cube in their representation as sum of cubes.
a(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).
Differs from A062941 only at n=1, because 0 is considered a 0-digit, not a 1-digit number here. - R. J. Mathar, Jul 09 2011
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
FORMULA
a(n) = A061439(n) - A061439(n-1).
MAPLE
a:=n->ceil(10^(n/3))-ceil(10^((n-1)/3));
MATHEMATICA
With[{c = Range[4650000]^3}, Length[#]&/@Table[Select[c, IntegerLength[#] == n &], {n, 20}]] (* Harvey P. Dale, Feb 01 2011 *)
Differences[Ceiling[10^(Range[0, 30]/3)]]
CROSSREFS
Sequence in context: A248664 A143195 A192799 * A085289 A095339 A216025
KEYWORD
nonn,base
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
More terms from T. D. Noe, Feb 01 2011
STATUS
approved