OFFSET
1,1
COMMENTS
a(n) is also the total number of n-digit numbers requiring 1 positive cube in their representation as sum of cubes.
a(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).
Differs from A062941 only at n=1, because 0 is considered a 0-digit, not a 1-digit number here. - R. J. Mathar, Jul 09 2011
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
MAPLE
a:=n->ceil(10^(n/3))-ceil(10^((n-1)/3));
MATHEMATICA
With[{c = Range[4650000]^3}, Length[#]&/@Table[Select[c, IntegerLength[#] == n &], {n, 20}]] (* Harvey P. Dale, Feb 01 2011 *)
Differences[Ceiling[10^(Range[0, 30]/3)]]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
More terms from T. D. Noe, Feb 01 2011
STATUS
approved