login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248664
Triangular array of coefficients of polynomials p(n,k) defined in Comments
15
1, 2, 2, 5, 12, 9, 16, 68, 112, 64, 65, 420, 1125, 1375, 625, 326, 2910, 11124, 21600, 20736, 7776, 1957, 22652, 114611, 311787, 470596, 369754, 117649, 13700, 196872, 1254976, 4455424, 9342976, 11468800, 7602176, 2097152, 109601, 1895148, 14699961, 65045025
OFFSET
1,2
COMMENTS
The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1).
These polynomials occur in connection with factorials of numbers of the form [n/k] = floor(n/k); e.g., Sum_{n >= 0} ([n/k]!^k)/n! = Sum_{n >= 0} (n!^k)*p(k,n)/(k*n + k - 1)!.
LINKS
EXAMPLE
The first six polynomials:
p(1,x) = 1
p(2,x) = 2 (1 + x)
p(3,x) = 5 + 12 x + 9x^2
p(4,x) = 4 (4 + 17 x + 28 x^2 + 16 x^3)
p(5,x) = 5 (13 + 84 x + 225 x^2 + 275 x^3 + 125 x^4)
p(6,x) = 2 (163 + 1455 x + 5562 x^2 + 10800 x^3 + 10368 x^4 + 3888 x^5)
First six rows of the triangle:
1
2 2
5 12 9
16 68 112 64
65 420 1125 1375 625
326 2910 11124 21600 20736 7776
MATHEMATICA
t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}];
p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
TableForm[Table[Factor[p[x, n]], {n, 1, 6}]]
c[n_] := c[n] = CoefficientList[p[x, n], x];
TableForm[Table[c[n], {n, 1, 10}]] (* A248664 array *)
Flatten[Table[c[n], {n, 1, 10}]] (* A248664 sequence *)
u = Table[Apply[GCD, c[n]], {n, 1, 60}] (* A248666 *)
Flatten[Position[u, 1]] (* A248667 *)
Table[Apply[Plus, c[n]], {n, 1, 60}] (* A248668 *)
Table[p[x, n] /. x -> -1, {n, 1, 30}] (* A153229 signed *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 11 2014
STATUS
approved