The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248666 Greatest common divisor of the coefficients of the polynomial p(n,x) defined in Comments. 7
 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 13, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 26, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 37, 2, 13, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 52, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 65, 2, 1, 4, 1, 10, 1, 4, 1, 74, 5, 4, 1, 26, 1, 20, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1). For more, see A248664. For n such that the coefficients of p(n,x) are relatively prime, see A248667. LINKS EXAMPLE The first six polynomials are shown here. The number just to the right of "=" is the GCD of the coefficients. p(1,x) = 1*1 p(2,x) = 2*(x + 1) p(3,x) = 1*(9x^2 + 12 x + 5) p(4,x) = 4*(16 x^3 + 28 x^2 + 17 x + 4) p(5,x) = 5*(125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13) p(6,x) = 2*(3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163), so that A248666 = (1,2,1,4,5,2, ...). MATHEMATICA t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}]; p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[Factor[p[x, n]], {n, 1, 6}]] c[n_] := c[n] = CoefficientList[p[x, n], x]; TableForm[Table[c[n], {n, 1, 10}]] (* A248664 array *) Table[Apply[GCD, c[n]], {n, 1, 60}] (* A248666 *) CROSSREFS Cf. A248664, A248665, A248667, A248668, A248669. Sequence in context: A264017 A159971 A114158 * A162407 A352458 A132741 Adjacent sequences: A248663 A248664 A248665 * A248667 A248668 A248669 KEYWORD nonn,easy AUTHOR Clark Kimberling, Oct 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 18:02 EST 2023. Contains 359833 sequences. (Running on oeis4.)