login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114158
Triangle, read by rows, equal to the matrix inverse of Q=A113381.
8
1, -2, 1, 4, -5, 1, 21, -5, -8, 1, 130, 20, -32, -11, 1, 1106, 840, -260, -77, -14, 1, 10044, 24865, -2584, -1089, -140, -17, 1, -18366, 823383, -12828, -21428, -2737, -221, -20, 1, -9321125, 31847653, 1160956, -523831, -73458, -5474, -320, -23, 1
OFFSET
0,2
EXAMPLE
Triangle Q^-1 begins:
1;
-2,1;
4,-5,1;
21,-5,-8,1;
130,20,-32,-11,1;
1106,840,-260,-77,-14,1;
10044,24865,-2584,-1089,-140,-17,1;
-18366,823383,-12828,-21428,-2737,-221,-20,1; ...
Triangle Q^-2 begins:
1;
-4,1;
18,-10,1;
20,30,-16,1;
-139,255,24,-22,1;
-3945,3085,544,0,-28,1;
-99849,51015,12444,671,-42,-34,1; ...
PROG
(PARI) T(n, k)=local(P, Q, R, W); P=Mat(1); for(m=2, n+1, W=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, W[i, j]=1, if(j==1, W[i, 1]=1, W[i, j]=(P^(3*j-2))[i-j+1, 1])); )); P=W); Q=matrix(#P, #P, r, c, if(r>=c, (P^(3*c-1))[r-c+1, 1])); (Q^-1)[n+1, k+1]
CROSSREFS
Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114159 (R^-1).
Sequence in context: A137346 A264017 A159971 * A370181 A248666 A162407
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Nov 15 2005
STATUS
approved