login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113381
Triangle Q, read by rows, such that Q^3 transforms column k of Q^2 into column k+1 of Q^2, so that column k of Q^2 equals column 0 of Q^(3*k+2), where Q^3 denotes the matrix cube of Q.
24
1, 2, 1, 6, 5, 1, 37, 45, 8, 1, 429, 635, 120, 11, 1, 7629, 12815, 2556, 231, 14, 1, 185776, 343815, 71548, 6556, 378, 17, 1, 5817106, 11651427, 2508528, 233706, 13391, 561, 20, 1, 224558216, 480718723, 106427700, 10069521, 579047, 23817, 780, 23, 1
OFFSET
0,2
COMMENTS
Related matrix products are: R^3*Q^-2 (A114154), Q^-2*P^3 (A114155).
FORMULA
Let [Q^m]_k denote column k of matrix power Q^m,
so that triangular matrix Q may be defined by
[Q]_k = [P^(3*k+2)]_0, k>=0,
where the triangular matrix P = A113370 satisfies:
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix R = A113389 by
[R]_k = [P^(3*k+3)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]_k = [P]_{k+1},
P^3 * [Q]_k = [Q]_{k+1},
P^3 * [R]_k = [R]_{k+1},
Q^3 * [P^2]_k = [P^2]_{k+1},
Q^3 * [Q^2]_k = [Q^2]_{k+1},
Q^3 * [R^2]_k = [R^2]_{k+1},
R^3 * [P^3]_k = [P^3]_{k+1},
R^3 * [Q^3]_k = [Q^3]_{k+1},
R^3 * [R^3]_k = [R^3]_{k+1},
for all k>=0.
EXAMPLE
Triangle Q begins:
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1;
185776,343815,71548,6556,378,17,1;
5817106,11651427,2508528,233706,13391,561,20,1;
224558216,480718723,106427700,10069521,579047,23817,780,23,1;
Matrix square Q^2 (A113384) starts:
1;
4,1;
22,10,1;
212,130,16,1;
3255,2365,328,22,1;
70777,57695,8640,616,28,1; ...
Matrix cube Q^3 (A113387) starts:
1;
6,1;
48,15,1;
605,255,24,1;
11196,5630,624,33,1;
280440,159210,19484,1155,42,1; ...
where Q^3 transforms column k of Q^2 into column k+1:
at k=0, [Q^3]*[1,4,22,212,3255,...] = [1,10,130,2365,...];
at k=1, [Q^3]*[1,10,130,2365,...] = [1,16,328,8640,...].
PROG
(PARI) Q(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(3*j-2))[i-j+1, 1])); )); A=B); (A^(3*k+2))[n-k+1, 1]
CROSSREFS
Cf. A113375 (column 0), A113382 (column 1), A113383 (column 2).
Cf. A113370 (P), A113374 (P^2), A113378 (P^3), A113384 (Q^2), A113387 (Q^3), A113389 (R), A113392 (R^2), A113394 (R^3).
Cf. A114154 (R^3*Q^-2), A114155 (Q^-2*P^3).
Cf. variants: A113340, A113350.
Sequence in context: A308498 A295517 A070918 * A228175 A118980 A351385
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2005
STATUS
approved