login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113394
Triangle, read by rows, equal to the matrix cube of triangle A113389.
5
1, 9, 1, 99, 18, 1, 1569, 360, 27, 1, 34344, 9051, 783, 36, 1, 980487, 284148, 26820, 1368, 45, 1, 34930455, 10865358, 1089126, 59250, 2115, 54, 1, 1502349459, 494019714, 51784137, 2946456, 110715, 3024, 63, 1, 76058669082, 26168502684
OFFSET
0,2
FORMULA
Column k of A113389^3 = column 0 of A113389^(3*k+3) for k>=0.
EXAMPLE
Triangle A113389^3 begins:
1;
9,1;
99,18,1;
1569,360,27,1;
34344,9051,783,36,1;
980487,284148,26820,1368,45,1;
34930455,10865358,1089126,59250,2115,54,1;
1502349459,494019714,51784137,2946456,110715,3024,63,1;
76058669082,26168502684,2840586075,167137110,6510780,185589,4095,72,1;
PROG
(PARI) T(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(3*j-2))[i-j+1, 1])); )); A=B); (matrix(#A, #A, r, c, if(r>=c, (A^(3*c))[r-c+1, 1]))^3)[n+1, k+1]
CROSSREFS
Cf. A113389, A113395 (column 0); recurrence: A091351, A113355.
Sequence in context: A051380 A374504 A136238 * A243754 A254932 A223511
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2005
STATUS
approved