login
A113394
Triangle, read by rows, equal to the matrix cube of triangle A113389.
5
1, 9, 1, 99, 18, 1, 1569, 360, 27, 1, 34344, 9051, 783, 36, 1, 980487, 284148, 26820, 1368, 45, 1, 34930455, 10865358, 1089126, 59250, 2115, 54, 1, 1502349459, 494019714, 51784137, 2946456, 110715, 3024, 63, 1, 76058669082, 26168502684
OFFSET
0,2
FORMULA
Column k of A113389^3 = column 0 of A113389^(3*k+3) for k>=0.
EXAMPLE
Triangle A113389^3 begins:
1;
9,1;
99,18,1;
1569,360,27,1;
34344,9051,783,36,1;
980487,284148,26820,1368,45,1;
34930455,10865358,1089126,59250,2115,54,1;
1502349459,494019714,51784137,2946456,110715,3024,63,1;
76058669082,26168502684,2840586075,167137110,6510780,185589,4095,72,1;
PROG
(PARI) T(n, k)=local(A, B); A=Mat(1); for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(3*j-2))[i-j+1, 1])); )); A=B); (matrix(#A, #A, r, c, if(r>=c, (A^(3*c))[r-c+1, 1]))^3)[n+1, k+1]
CROSSREFS
Cf. A113389, A113395 (column 0); recurrence: A091351, A113355.
Sequence in context: A051380 A374504 A136238 * A243754 A254932 A223511
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2005
STATUS
approved