login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223511 Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297. 24
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also the Bell transform of A045755(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

LINKS

Table of n, a(n) for n=1..36.

EXAMPLE

1;

9,1;

153,27,1;

3825,855,54,1;

126225,32895,2745,90,1;

5175225,1507815,150930,6705,135,1;

253586025,80565975,9205245,499590,13860,189,1;

14454403425,4926412575,623675430,39180645,1345050,25578,252,1;

MAPLE

b[0]:=g(x):

for j from 1 to 10 do

b[j]:=simplify(x^9*diff(b[j-1], x$1);

end do;

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016

MATHEMATICA

rows = 8;

t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}];

T[n_, k_] := BellY[n, k, t];

Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 22 2018, after Peter Luschny *)

CROSSREFS

Cf. A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223512-A223522, A223168-A223172, A223523-A223532.

Sequence in context: A113394 A243754 A254932 * A051231 A258437 A046761

Adjacent sequences:  A223508 A223509 A223510 * A223512 A223513 A223514

KEYWORD

nonn,easy,tabl

AUTHOR

Udita Katugampola, Mar 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 02:23 EDT 2020. Contains 333153 sequences. (Running on oeis4.)