login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223511
Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
24
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
OFFSET
1,2
COMMENTS
Also the Bell transform of A045755(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
EXAMPLE
1;
9,1;
153,27,1;
3825,855,54,1;
126225,32895,2745,90,1;
5175225,1507815,150930,6705,135,1;
253586025,80565975,9205245,499590,13860,189,1;
14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
MAPLE
b[0]:=g(x):
for j from 1 to 10 do
b[j]:=simplify(x^9*diff(b[j-1], x$1);
end do;
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
MATHEMATICA
rows = 8;
t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
KEYWORD
nonn,easy,tabl
AUTHOR
Udita Katugampola, Mar 23 2013
STATUS
approved