login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258437
Smallest number m such that A062234(m) = A062234(m-1+k) for k = 1..n.
7
9, 1, 302, 332, 465460, 67928439
OFFSET
1,1
COMMENTS
From Michel Marcus, Feb 09 2022: (Start)
Previous name: "Smallest number m such that A258383(m) = n" was not ok. For instance, for a(1) the smallest m such that A258383(m)=1 is 5, then we have to sum up the first 5 terms 2+2+2+2+1 to get 9, as shown in the example table (whose 2nd and 3rd column names I edited too).
Note that prime([302, 332, 465460]) = [1997, 2237, 6824897] which is a subsequence of A090807. Then one can verify that primepi(1356705137 = A090807(7)) = 67928439 and primepi(3637803390827 = A090807(8)) = 130463972798 are good candidates for a(6) and a(7). a(6) has been confirmed by program. (End)
FORMULA
A258383(a(n)) = n and A258383(m) != n for m < a(n);
let m = A258432(a(n)): A062234(m) = A062234(m-1+k) for k = 1..n.
EXAMPLE
n | f(n) | a(n) = A258432(f(n)) | Run in A062234
---+--------+----------------------+--------------------------
1 | 5 | 9 = A258469(1) | [17]
2 | 1 | 1 = A257762(1) | [1, 1]
3 | 265 | 302 = A258449(1) | [1995, 1995, 1995]
4 | 290 | 332 = A257892(1) | [2235, 2235, 2235, 2235]
5 | 440676 | 465460 = A257951(1) | [ ___ 5 x 6824895 ___ ]
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a258437 = (+ 1) . fromJust . (`elemIndex` a258383_list)
(PARI) f(n) = 2*prime(n) - prime(n+1); \\ A062234
lista(nn) = {my(vp=primes(nn)); my(v=vector(nn-1, k, 2*vp[k] - vp[k+1]), last=v[1], nb=1, list=List()); kill(vp); for (n=2, nn-1, if (v[n]==last, nb++, listput(list, nb); last=v[n]; nb=1); ); Vec(list); } \\ A258383
find(k, v) = {my(i=1); while (v[i] != k, i++); i; }
listr(nn) = {my(v=lista(nn)); for (k=1, 6, my(pos = find(k, v)); print1(sum(i=1, pos, v[i])- k + 1, ", "); ); }
listr(9*10^7) \\ Michel Marcus, Feb 09 2022
KEYWORD
nonn,more
AUTHOR
Reinhard Zumkeller, May 31 2015
EXTENSIONS
New name and a(6) from Michel Marcus, Feb 09 2022
STATUS
approved