login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258435
Primes of form x^2 - phi(x) in increasing order.
4
3, 7, 43, 157, 1069, 1201, 4177, 4423, 5869, 6163, 8209, 17581, 19183, 22651, 26407, 37057, 48649, 60793, 61837, 82129, 89137, 102829, 113233, 115981, 121453, 141793, 143263, 190573, 208393, 230929, 283609, 292141, 303097, 314401, 337069
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 3, because 2^2 - 1 = 3, and 1^2 - 1 = 0 is not a prime.
a(2) = 7, since 3^2 = 9, phi(3) = 2, so 9-2 = 7 (prime).
a(3) = 43, since 7^2 = 49, phi(7) = 6, so 49-6 = 43 (prime).
a(6) = 1201, since 35^2 = 1225, phi(35) = 24, so 1225-24 = 1201 (prime).
MATHEMATICA
lst = Table[n^2 - EulerPhi[n], {n, 1000}]; Select[lst, PrimeQ]
Select[Table[n^2 - EulerPhi[n], {n, 1000}], PrimeQ] (* Vincenzo Librandi, Jun 03 2015 *)
PROG
(Magma) [a: n in [1..1000] | IsPrime(a) where a is n^2-EulerPhi(n) ]; // Vincenzo Librandi, Jun 03 2015
(PARI) lista(nn) = {for (n=1, nn, if (isprime(p=n^2 -eulerphi(n)), print1(p, ", ")); ); } \\ Michel Marcus, Jul 08 2015
CROSSREFS
Subset of A258434.
For phi see A000010.
A074268 is a subsequence. - Michel Marcus, Jun 19 2015
Cf. A259145.
Sequence in context: A050633 A107636 A303160 * A074268 A019026 A181729
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Jun 03 2015
Edited by Wolfdieter Lang, Jun 16 2015
STATUS
approved