login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A259145
Numbers k such that k^2 - phi(k) is prime, where phi() is A000010.
4
2, 3, 7, 13, 33, 35, 65, 67, 77, 79, 91, 133, 139, 151, 163, 193, 221, 247, 249, 287, 299, 321, 337, 341, 349, 377, 379, 437, 457, 481, 533, 541, 551, 561, 581, 591, 595, 611, 613, 643, 721, 727, 763, 769, 779, 789, 803, 817, 843, 851, 869, 917, 919, 991
OFFSET
1,1
COMMENTS
Conjecture: a(n) is a cyclic number (see A003277) for all n.
A065508 is the subsequence of prime terms. - Michel Marcus, Jun 19 2015
LINKS
EXAMPLE
a(1) = 2, since phi(2) = 1, thus 2^2 - 1 = 3 (prime).
a(3) = 7, since phi(7) = 6, thus 7^2 - 6 = 43 (prime).
a(5) = 33, since phi(33) = 20, thus 33^2 - 20 = 1069 (prime).
MATHEMATICA
Select[Range[2000], PrimeQ[#^2 - EulerPhi[#]] &]
PROG
(Magma) [n: n in [1..1000] | IsPrime(n^2 - EulerPhi(n))]; // Vincenzo Librandi, Jun 21 2015
(PARI) main(size)={ v=vector(size); i=0; m=1; while(i<size, if(isprime(m^2-eulerphi(m)), v[i++]=m); m++; ); return(v); } /* Anders Hellström, Jul 08 2015 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved