login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259142
Least prime p of the form n*q^2+(n+1)*r^2 with q and r prime.
1
17, 83, 43, 61, 149, 199, 263, 113, 331, 139, 383, 373, 173, 191, 199, 569, 587, 547, 251, 269, 277, 757, 1223, 1321, 859, 347, 787, 373, 3779, 1789, 1063, 953, 433, 1181, 1019, 1069, 1283, 503, 2311, 5209, 1193, 1453, 563, 1301, 2389, 607, 1367, 1657, 641, 659, 1483, 1777, 1811, 1861, 719, 1913, 1657, 1997, 4391, 3229, 797, 1823
OFFSET
1,1
COMMENTS
Values of {p,q,r}: {17,3,2},{83,2,5},{43,3,2},{61,2,3},{149,5,2},{199,2,5},{263,3,5},{113,2,3}.
a(2) = A084866(1). - Michel Marcus, Jun 20 2015
For p in A093191, a((p-4)/13) = p. - Robert Israel, Apr 30 2018
EXAMPLE
17=1*3^2+2*2^2, 83=2*2^2+3*5^2, 43=3*3^2+4*2^2.
MAPLE
P:= [seq(ithprime(i), i=1..20)]: np:= 20:
for n from 1 to 100 do
found:= false;
while not found do
R:= sort([seq(seq(n*q^2+(n+1)*p^2, p=P), q=P)]);
w:= n*4+(n+1)*P[-1]^2+1;
r:= ListTools:-SelectFirst(isprime, R);
if r <> NULL and r <= w then
A[n]:= r;
found:= true;
else
P:= [op(P), seq(ithprime(i), i=np+1..np+20)];
np:= np+20;
fi
od;
od:
seq(A[i], i=1..100); # Robert Israel, Apr 30 2018
CROSSREFS
Sequence in context: A053820 A294288 A296401 * A142059 A343498 A318743
KEYWORD
nonn,look
AUTHOR
Zak Seidov, Jun 19 2015
STATUS
approved