login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least prime p of the form n*q^2+(n+1)*r^2 with q and r prime.
1

%I #12 May 01 2018 02:44:52

%S 17,83,43,61,149,199,263,113,331,139,383,373,173,191,199,569,587,547,

%T 251,269,277,757,1223,1321,859,347,787,373,3779,1789,1063,953,433,

%U 1181,1019,1069,1283,503,2311,5209,1193,1453,563,1301,2389,607,1367,1657,641,659,1483,1777,1811,1861,719,1913,1657,1997,4391,3229,797,1823

%N Least prime p of the form n*q^2+(n+1)*r^2 with q and r prime.

%C Values of {p,q,r}: {17,3,2},{83,2,5},{43,3,2},{61,2,3},{149,5,2},{199,2,5},{263,3,5},{113,2,3}.

%C a(2) = A084866(1). - _Michel Marcus_, Jun 20 2015

%C For p in A093191, a((p-4)/13) = p. - _Robert Israel_, Apr 30 2018

%H Robert Israel, <a href="/A259142/b259142.txt">Table of n, a(n) for n = 1..10000</a>

%H Zak Seidov, <a href="/A259142/a259142.txt">First 100 values of {p,q,r}.</a>

%e 17=1*3^2+2*2^2, 83=2*2^2+3*5^2, 43=3*3^2+4*2^2.

%p P:= [seq(ithprime(i),i=1..20)]: np:= 20:

%p for n from 1 to 100 do

%p found:= false;

%p while not found do

%p R:= sort([seq(seq(n*q^2+(n+1)*p^2,p=P),q=P)]);

%p w:= n*4+(n+1)*P[-1]^2+1;

%p r:= ListTools:-SelectFirst(isprime,R);

%p if r <> NULL and r <= w then

%p A[n]:= r;

%p found:= true;

%p else

%p P:= [op(P), seq(ithprime(i),i=np+1..np+20)];

%p np:= np+20;

%p fi

%p od;

%p od:

%p seq(A[i],i=1..100); # _Robert Israel_, Apr 30 2018

%Y Cf. A000040, A093191.

%K nonn,look

%O 1,1

%A _Zak Seidov_, Jun 19 2015