login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053820
a(n) = Sum_{k=1..n, gcd(n,k) = 1} k^4.
9
1, 1, 17, 82, 354, 626, 2275, 3108, 7395, 9044, 25333, 17668, 60710, 50470, 88388, 103496, 243848, 129750, 432345, 266088, 497574, 497178, 1151403, 539912, 1541770, 1153724, 1900089, 1516844, 3756718, 1246568, 5273999
OFFSET
1,3
COMMENTS
If gcd(n,30) = 1, then a(n) is divisible by n. If n has at least one prime factor == 1 (mod 30), then a(n) is divisible by n. - Jianing Song, Jul 13 2018
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_4(n).
L. E. Dickson, History of the Theory of Numbers, Vol. I (Reprint 1966), p. 140.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
P. G. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (2005) 403-408.
FORMULA
a(n) = (6*n^4*A000010(n)+10*n^3*A023900(n)-n*A063453(n))/30 for n>1. Formula is derived from a more general formula of A. Thacker (1850), see [Dickson, Brown]. - Franz Vrabec, Aug 21 2005
G.f. A(x) satisfies: A(x) = x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^6 - Sum_{k>=2} k^4 * A(x^k). - Ilya Gutkovskiy, Mar 29 2020
Sum_{k=1..n} a(k) ~ n^6 / (5*Pi^2). - Amiram Eldar, Dec 03 2023
MATHEMATICA
a[n_] := Sum[If[GCD[n, k] == 1, k^4, 0], {k, 1, n}]; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Feb 26 2014 *)
a[1] = 1; a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (n^4/5) * Times @@ ((p - 1)*p^(e - 1)) + (n^3/3) * Times @@ (1 - p) - (n/30) * Times @@ (1 - p^3)]; Array[a, 100] (* Amiram Eldar, Dec 03 2023 *)
PROG
(PARI) a(n) = sum(k=1, n, (gcd(n, k) == 1)*k^4); \\ Michel Marcus, Feb 26 2014
(PARI) a(n) = {my(f = factor(n)); if(n == 1, 1, (n^4/5) * eulerphi(f) + (n^3/3) * prod(i = 1, #f~, 1 - f[i, 1]) - (n/30) * prod(i = 1, #f~, 1 - f[i, 1]^3)); } \\ Amiram Eldar, Dec 03 2023
CROSSREFS
Column k=4 of A308477.
Sequence in context: A065960 A017671 A001159 * A294288 A296401 A259142
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 07 2000
STATUS
approved