The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237255 Values of x in the solutions to x^2 - 5xy + y^2 + 17 = 0, where 0 < x < y. 3
 2, 3, 7, 13, 33, 62, 158, 297, 757, 1423, 3627, 6818, 17378, 32667, 83263, 156517, 398937, 749918, 1911422, 3593073, 9158173, 17215447, 43879443, 82484162, 210239042, 395205363, 1007315767, 1893542653, 4826339793, 9072507902, 23124383198, 43468996857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The corresponding values of y are given by a(n+2). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,5,0,-1). FORMULA a(n) = 5*a(n-2)-a(n-4). G.f.: -x*(x-1)*(x+2)*(2*x+1) / (x^4-5*x^2+1). EXAMPLE 3 is in the sequence because (x, y) = (3, 13) is a solution to x^2 - 5xy + y^2 + 17 = 0. PROG (PARI) Vec(-x*(x-1)*(x+2)*(2*x+1)/(x^4-5*x^2+1) + O(x^100)) CROSSREFS Cf. A004253, A237254. Sequence in context: A007827 A250308 A259145 * A129859 A280765 A056953 Adjacent sequences:  A237252 A237253 A237254 * A237256 A237257 A237258 KEYWORD nonn,easy AUTHOR Colin Barker, Feb 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 17:37 EDT 2021. Contains 346294 sequences. (Running on oeis4.)