The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237256 Smallest member of Sophie Germain pair, wherein each member of the prime pair is the smallest of its prime quadruplets (p, p+2, p+8, p+12). 3
 5, 29, 41609, 4287599, 16254449, 87130709, 118916729, 157119089, 173797289, 180210059, 207959879, 309740999, 349066439, 356259989, 401519399, 473953229, 705480749, 912950249, 994719629 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS It is not known if there are infinitely many Sophie Germain pairs with this property. LINKS Abhiram R Devesh and Dana Jacobsen, Table of n, a(n) for n = 1..1155 [first 155 terms from Abhiram R Devesh] Eric Weisstein's World of Mathematics, Sophie Germain Prime Wikipedia, Sophie Germain Prime EXAMPLE a(1): p = 5; (2*p)+1 = 11; prime quadruplets (5,7,13,17); (11,13,19,23). a(2): p = 29; (2*p)+1 = 59; prime quadruplets (29,31,37,41); (59,61,67,71). PROG (Python) p1=2 n=2 count=0 while p1>2: ....## Generate the a chain of numbers with length 4 ....cc=[] ....cc.append(p1) ....for i in range(1, n): ........cc.append((2**(i)*p1+((2**i)-1))) ....## chain entries + 2 ....cc2=[c+2 for c in cc] ....## chain entries + 8 ....cc8=[c+8 for c in cc] ....## chain entries + 12 ....cc12=[c+12 for c in cc] ....## check if cc is a Sophie Germain Pair or not ....## pf.isp_list returns True or false for a given list of numbers ....##             if they are prime or not ....## ....pcc=pf.isp_list(cc) ....pcc2=pf.isp_list(cc2) ....pcc8=pf.isp_list(cc8) ....pcc12=pf.isp_list(cc12) ....## Number of primes for cc ....npcc=pcc.count(True) ....## Number of primes for cc2 ....npcc2=pcc2.count(True) ....## Number of primes for cc8 ....npcc8=pcc8.count(True) ....## Number of primes for cc12 ....npcc12=pcc12.count(True) ....if npcc==n and npcc2==n and npcc8==n and npcc12==n: ........print "For length ", n, " the series is : ", cc, " , ", cc2, " , ", cc8, " and " cc12 ....p1=pf.nextp(p1) (PARI) forprime(p=1, 1e9, my(t=2*p+1); if(isprime(t) && isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(t+2) && isprime(t+8) && isprime(t+12), print1(p, ", "))) \\ Felix FrÃ¶hlich, Jul 26 2014 (Perl) use ntheory ":all"; my @p = sieve_prime_cluster(1, 2e9, 2, 8, 12); my %h; undef @h{@p}; for (@p) { say if exists \$h{2*\$_+1} } # Dana Jacobsen, Oct 03 2015 CROSSREFS Cf. A005384, A233540. Sequence in context: A086720 A056869 A228028 * A172041 A187605 A266569 Adjacent sequences:  A237253 A237254 A237255 * A237257 A237258 A237259 KEYWORD nonn AUTHOR Abhiram R Devesh, Feb 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 18:14 EST 2020. Contains 332005 sequences. (Running on oeis4.)