|
|
A005384
|
|
Sophie Germain primes p: 2p+1 is also prime.
(Formerly M0731)
|
|
410
|
|
|
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Then 2p+1 is called a safe prime: see A005385.
Primes p such that the equation phi(x) = 2p has solutions, where phi is the totient function. See A087634 for another such collection of primes. - T. D. Noe, Oct 24 2003
Let q = 2n+1. For these n (and q), the difference of two cyclotomic polynomials can be written as a cyclotomic polynomial in x^2: Phi(q,x) - Phi(2q,x) = 2x Phi(n,x^2). - T. D. Noe, Jan 04 2008
A Sophie Germain prime p is 2, 3 or of the form 6k-1, k >= 1, i.e., p = 5 (mod 6). A prime p of the form 6k+1, k >= 1, i.e., p = 1 (mod 6), cannot be a Sophie Germain prime since 2p+1 is divisible by 3. - Daniel Forgues, Jul 31 2009
Solutions of the equation n'+(2n+1)'=2, where n' is the arithmetic derivative of n. - Paolo P. Lava, Aug 10 2012
In the spirit of the conjecture related to A217788, we conjecture that for any integers n >= m > 0 there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) is prime. - Zhi-Wei Sun, Mar 26 2013
If k is the product of a Sophie Germain prime p and its corresponding safe prime 2p+1, then a(n) = (k-phi(k))/3, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
Giovanni Resta found the first Sophie Germain prime which is also Brazilian number (A125134), 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)_73. - Bernard Schott, Mar 07 2019
For all Sophie Germain primes p >= 5, 2*p + 1 = min(A, B) where A is the smallest prime factor of 2^p - 1 and B the smallest prime factor of (2^p + 1) / 3. - Alain Rocchelli, Feb 01 2023
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
A. Peretti, The quantity of Sophie Germain primes less than x, Bull. Number Theory Related Topics, Vol. 11, No. 1-3 (1987), pp. 81-92.
Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
P. Bruillard, S.-H. Ng, E. Rowell and Z. Wang, On modular categories, arXiv preprint arXiv:1310.7050 [math.QA], 2013.
Agoh Takashi, On Sophie Germain primes, Number theory (Liptovský Ján, 1999), Tatra Mt. Math. Publ., Vol. 20 (2000), pp. 65-73.
Samuel Yates, Sophie Germain primes, in "The mathematical heritage of C. F. Gauss," World Sci. Publ., River Edge, NJ, 1991, pp. 882-886.
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) is in the interval (1.533944198, 1.8026367) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021
|
|
MAPLE
|
A:={}: for n from 1 to 246 do if isprime(2*ithprime(n)+1)=true then A:=A union {ithprime(n)} else A:=A fi od: A:=A; # Emeric Deutsch, Dec 09 2004
|
|
MATHEMATICA
|
Select[Prime[Range[1000]], PrimeQ[2#+1]&]
lst = {}; Do[If[PrimeQ[n + 1] && PrimeOmega[n] == 2, AppendTo[lst, n/2]], {n, 2, 10^4}]; lst (* Hilko Koning, Aug 17 2021 *)
|
|
PROG
|
(Magma) [ p: p in PrimesUpTo(1560) | IsPrime(2*p+1) ]; // Klaus Brockhaus, Jan 01 2009
(PARI) select(p->isprime(2*p+1), primes(1000)) \\ In old PARI versions <= 2.4.2, use select(primes(1000), p->isprime(2*p+1)).
(PARI) forprime(n=2, 10^3, if(ispseudoprime(2*n+1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014
(PARI) is_A005384=(p->isprime(2*p+1)&&isprime(p));
{A005384_vec(N=100, p=1)=vector(N, i, until(isprime(2*p+1), p=nextprime(p+1)); p)} \\ M. F. Hasler, Mar 03 2020
(GAP) Filtered([1..1600], p->IsPrime(p) and IsPrime(2*p+1)); # Muniru A Asiru, Mar 06 2019
(Python)
from sympy import isprime, nextprime
def ok(p): return isprime(2*p+1)
def aupto(limit): # only test primes
alst, p = [], 2
while p <= limit:
if ok(p): alst.append(p)
p = nextprime(p)
return alst
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|