The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005384 Sophie Germain primes p: 2p+1 is also prime. (Formerly M0731) 419
 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Then 2p+1 is called a safe prime: see A005385. Primes p such that the equation phi(x) = 2p has solutions, where phi is the totient function. See A087634 for another such collection of primes. - T. D. Noe, Oct 24 2003 Subsequence of A117360. - Reinhard Zumkeller, Mar 10 2006 Let q = 2n+1. For these n (and q), the difference of two cyclotomic polynomials can be written as a cyclotomic polynomial in x^2: Phi(q,x) - Phi(2q,x) = 2x Phi(n,x^2). - T. D. Noe, Jan 04 2008 A Sophie Germain prime p is 2, 3 or of the form 6k-1, k >= 1, i.e., p = 5 (mod 6). A prime p of the form 6k+1, k >= 1, i.e., p = 1 (mod 6), cannot be a Sophie Germain prime since 2p+1 is divisible by 3. - Daniel Forgues, Jul 31 2009 Also solutions to the equation: floor(4/A000005(2*n^2+n)) = 1. - Enrique Pérez Herrero, May 03 2012 In the spirit of the conjecture related to A217788, we conjecture that for any integers n >= m > 0 there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) is prime. - Zhi-Wei Sun, Mar 26 2013 If k is the product of a Sophie Germain prime p and its corresponding safe prime 2p+1, then a(n) = (k-phi(k))/3, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013 Giovanni Resta found the first Sophie Germain prime which is also a Brazilian number (A125134), 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)_73. - Bernard Schott, Mar 07 2019 For all Sophie Germain primes p >= 5, 2*p + 1 = min(A, B) where A is the smallest prime factor of 2^p - 1 and B the smallest prime factor of (2^p + 1) / 3. - Alain Rocchelli, Feb 01 2023 Consider a pair of numbers (p, 2*p+1), with p >= 3. Then p is a Sophie Germain prime iff (p-1)!^2 + 6*p == 1 (mod p*(2*p+1)). - Davide Rotondo, May 02 2024 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870. A. Peretti, The quantity of Sophie Germain primes less than x, Bull. Number Theory Related Topics, Vol. 11, No. 1-3 (1987), pp. 81-92. Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS J. S. Cheema, Table of n, a(n) for n = 1..100000. [This replaces an earlier b-file computed by T. D. Noe] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. R. P. Boas & N. J. A. Sloane, Correspondence, 1974 P. Bruillard, S.-H. Ng, E. Rowell and Z. Wang, On modular categories, arXiv preprint arXiv:1310.7050 [math.QA], 2013. Chris K. Caldwell, The Prime Glossary, Sophie Germain Prime Andrea Del Centina, Letters of Sophie Germain preserved in Florence Historia Mathematica, Vol. 32 (2005), pp. 60-75. Harvey Dubner, Large Sophie Germain Primes, Math. Comp., Vol. 65, No. 213 (1996), pp. 393-396. Luis H. Gallardo and Olivier Rahavandrainy, There are finitely many even perfect polynomials over F_p with p+1 irreducible divisors, Acta Mathematica Universitatis Comenianae, Vol. 83, No. 2, 2016, 261-275. Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33. Reikku Kulon, Sublinear arbitrary precision generator of Sophie Germain and safe primes in C (public domain). Henri Lifchitz, A new and simpler primality test for Sophie-Germain numbers(q=2*p+1). Victor Meally, Letter to N. J. A. Sloane, no date. Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013. Frans Oort, Prime numbers, 2013. Larry Riddle, Sophie Germain and Fermat's Last Theorem, Agnes Scott College, Math. Dept., Jul, 1999. Carlos Rivera, Puzzle 1122. OEIS A005385, The Prime Puzzles & Problems Connection. Carlos Rivera, Puzzle 1140. Test for Sophie Germain primes, The Prime Puzzles & Problems Connection. Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017. Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS, Vol. 13 (2013), Article A65. Agoh Takashi, On Sophie Germain primes, Number theory (Liptovský Ján, 1999), Tatra Mt. Math. Publ., Vol. 20 (2000), pp. 65-73. Terence Tao, Obstructions to uniformity and arithmetic patterns in the primes, arXiv:math/0505402 [math.NT], 2005. Apoloniusz Tyszka, On sets X subset of N for which we know an algorithm that computes a threshold number t(X) in N such that X is infinite if and only if X contains an element greater than t(X), 2019. Vmoraru, PlanetMath.org, Sophie Germain prime. Samuel S. Wagstaff, Jr., Sum of Reciprocals of Germain Primes, Journal of Integer Sequences, Vol. 24, No. 2 (2021), Article 21.9.5. Eric Weisstein's World of Mathematics, Sophie Germain Prime. Eric Weisstein's World of Mathematics, Integer Sequence Primes. Wikipedia, Sophie Germain prime. Samuel Yates, Sophie Germain primes, in "The mathematical heritage of C. F. Gauss," World Sci. Publ., River Edge, NJ, 1991, pp. 882-886. FORMULA a(n) mod 10 <> 7. - Reinhard Zumkeller, Feb 12 2009 A156660(a(n)) = 1; A156874 gives numbers of Sophie Germain primes <= n. - Reinhard Zumkeller, Feb 18 2009 tau(4*a(n) + 2) = tau(4*a(n)) - 2, for n > 1. - Arkadiusz Wesolowski, Aug 25 2012 eulerphi(4*a(n) + 2) = eulerphi(4*a(n)) + 2, for n > 1. - Arkadiusz Wesolowski, Aug 26 2012 A005097 INTERSECT A000040. - R. J. Mathar, Mar 23 2017 Sum_{n>=1} 1/a(n) is in the interval (1.533944198, 1.8026367) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021 a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024 MAPLE A:={}: for n from 1 to 246 do if isprime(2*ithprime(n)+1) then A:=A union {ithprime(n)} fi od: A:=A; # Emeric Deutsch, Dec 09 2004 MATHEMATICA Select[Prime[Range[1000]], PrimeQ[2#+1]&] lst = {}; Do[If[PrimeQ[n + 1] && PrimeOmega[n] == 2, AppendTo[lst, n/2]], {n, 2, 10^4}]; lst (* Hilko Koning, Aug 17 2021 *) PROG (Magma) [ p: p in PrimesUpTo(1560) | IsPrime(2*p+1) ]; // Klaus Brockhaus, Jan 01 2009 (PARI) select(p->isprime(2*p+1), primes(1000)) \\ In old PARI versions <= 2.4.2, use select(primes(1000), p->isprime(2*p+1)). (PARI) forprime(n=2, 10^3, if(ispseudoprime(2*n+1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014 (PARI) is_A005384=(p->isprime(2*p+1)&&isprime(p)); {A005384_vec(N=100, p=1)=vector(N, i, until(isprime(2*p+1), p=nextprime(p+1)); p)} \\ M. F. Hasler, Mar 03 2020 (GAP) Filtered([1..1600], p->IsPrime(p) and IsPrime(2*p+1)); # Muniru A Asiru, Mar 06 2019 (Python) from sympy import isprime, nextprime def ok(p): return isprime(2*p+1) def aupto(limit): # only test primes alst, p = [], 2 while p <= limit: if ok(p): alst.append(p) p = nextprime(p) return alst print(aupto(1559)) # Michael S. Branicky, Feb 03 2021 CROSSREFS Cf. A005385, A057331, A005602, A087634. Cf. also A000355, A156541, A156542, A156592, A161896, A156660, A156874, A092816, A023212, A007528 (primes of the form 6k-1). For primes p that remains prime through k iterations of the function f(x) = 2x + 1: this sequence (k=1), A007700 (k=2), A023272 (k=3), A023302 (k=4), A023330 (k=5), A278932 (k=6), A138025 (k=7), A138030 (k=8). Sequence in context: A188534 A214196 A246857 * A118571 A118504 A215714 Adjacent sequences: A005381 A005382 A005383 * A005385 A005386 A005387 KEYWORD nonn,nice AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 05:56 EDT 2024. Contains 375044 sequences. (Running on oeis4.)