|
|
A007700
|
|
Numbers n such that n, 2n+1, and 4n+3 all prime.
(Formerly M1406)
|
|
46
|
|
|
2, 5, 11, 41, 89, 179, 359, 509, 719, 1019, 1031, 1229, 1409, 1451, 1481, 1511, 1811, 1889, 1901, 1931, 2459, 2699, 2819, 3449, 3491, 3539, 3821, 3911, 5081, 5399, 5441, 5849, 6101, 6131, 6449, 7079, 7151, 7349, 7901, 8969, 9221, 10589, 10691, 10709, 11171
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding primes 2n+1 and 4n+3 respectively have n-1 and 2n primitive roots. - Lekraj Beedassy, Jan 07 2005
At n > 2, a(n) == {11,29} (mod 30). - Zak Seidov, Jan 31 2013
|
|
REFERENCES
|
T. Moreau, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudorandom number generator, SIAM J. Comput. 15 (1986), no. 2, 364-383.
|
|
MAPLE
|
A007700 := proc(n) local p1, p2; p1 := 2*n+1; p2 := 2*p1+1; if isprime(n) = true and isprime(p1)=true and isprime(p2)=true then RETURN(n); fi; end;
|
|
MATHEMATICA
|
Select[Range[10^3*3], PrimeQ[ # ]&&PrimeQ[2*#+1]&&PrimeQ[4*#+3] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
|
|
PROG
|
(PARI) is(n)=isprime(n)&&isprime(2*n+1)&&isprime(4*n+3) \\ Charles R Greathouse IV, Mar 21 2013
|
|
CROSSREFS
|
Intersection of A005384 and A023213.
Cf. A005385, A023272, A023302, A023330, A057331, A005602.
Sequence in context: A191029 A106886 A237814 * A071313 A172297 A128231
Adjacent sequences: A007697 A007698 A007699 * A007701 A007702 A007703
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Simon Plouffe
|
|
STATUS
|
approved
|
|
|
|