login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023330
Primes that remain prime through 5 iterations of function f(x) = 2x + 1.
34
89, 63419, 127139, 405269, 810809, 1069199, 1122659, 1178609, 1333889, 1598699, 1806089, 1958249, 2164229, 2245319, 2329469, 2606069, 2848949, 3241289, 3339989, 3784199, 3962039, 4088879, 4328459, 4444829, 4658939, 4664249, 4894889, 4897709, 5132999
OFFSET
1,1
COMMENTS
Primes p such that 2*p+1, 4*p+3, 8*p+7, 16*p+15 and 32*p+31 are also primes. - Vincenzo Librandi, Aug 04 2010
LINKS
FORMULA
a(n) == 29 (mod 30). - Zak Seidov, Jan 31 2013
MATHEMATICA
Select[Prime[Range[10^5]], PrimeQ[a1=2*#+1] && PrimeQ[a2=2*a1+1] && PrimeQ[a3=2*a2+1] && PrimeQ[a4=2*a3+1] && PrimeQ[a5=2*a4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
PROG
(Magma) [n: n in [1..5000000] | forall{2^i*n+2^i-1: i in [0..5] | IsPrime(2^i*n+2^i-1)}]; // Vincenzo Librandi, Aug 04 2010
(PARI) is(n)=isprime(n) && isprime(2*n+1) && isprime(4*n+3) && isprime(8*n+7) && isprime(16*n+15) && isprime(32*n+31) \\ Charles R Greathouse IV, Jul 01 2013
(Python)
from sympy import prime, isprime
A023330_list = [p for p in (prime(n) for n in range(1, 10**5)) if all([isprime(2**m*(p+1)-1) for m in range(1, 6)])] # Chai Wah Wu, Sep 09 2014
KEYWORD
nonn
STATUS
approved