login
A023327
Primes that remain prime through 4 iterations of function f(x) = 9x + 10.
3
103, 281, 293, 823, 937, 1733, 3361, 3919, 4129, 6101, 8443, 15413, 16217, 17959, 21067, 26459, 26479, 30253, 31247, 36691, 37171, 38561, 40493, 41411, 46451, 57709, 60869, 64621, 79433, 79987, 89821, 92821, 113567, 114997, 118873, 125539, 142573
OFFSET
1,1
COMMENTS
Primes p such that 9*p+10, 81*p+100, 729*p+910 and 6561*p+8200 are also primes. - Vincenzo Librandi, Aug 04 2010
EXAMPLE
103 is in the sequence because it is prime, 9*103 + 10 = 937 is prime, 9*937 + 10 = 8443 is prime, 9*8443 + 10 = 75997 is prime, and 9*75997 + 10 = 683983 is prime. - Michael B. Porter, Aug 23 2016
MAPLE
A023327:=n->`if`(isprime(n) and isprime(9*n+10) and isprime(81*n+100) and isprime(729*n+910) and isprime(6561*n+8200), n, NULL): seq(A023327(n), n=1..5*10^5); # Wesley Ivan Hurt, Aug 23 2016
PROG
(Magma) [n: n in [1..5000000] | IsPrime(n) and IsPrime(9*n+10) and IsPrime(81*n+100) and IsPrime(729*n+910) and IsPrime(6561*n+8200)] // Vincenzo Librandi, Aug 04 2010
CROSSREFS
Sequence in context: A046297 A252261 A141992 * A023324 A034846 A023352
KEYWORD
nonn
STATUS
approved