The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005386 Area of n-th triple of squares around a triangle. (Formerly M3017) 8
 1, 3, 16, 75, 361, 1728, 8281, 39675, 190096, 910803, 4363921, 20908800, 100180081, 479991603, 2299777936, 11018898075, 52794712441, 252954664128, 1211978608201, 5806938376875, 27822713276176, 133306628004003, 638710426743841, 3060245505715200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n)*(-1)^(n+1) is the r=-3 member of the r-family of sequences S_r(n), n>=1, defined in A092184 where more information can be found. The sequence is the case P1 = 3, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS J. C. G. Nottrot, Vierkantenkransen rond een driehoek, Pythagoras (Netherlands), 14 (1975-1976) 77-81. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume. Index entries for linear recurrences with constant coefficients, signature (4,4,-1). FORMULA G.f.: x*(1-x)/(x^3-4*x^2-4*x+1). a(n) = 4*(a(n-1)+a(n-2))-a(n-3), a(1)=1, a(2)=3, a(3)=16 a(n) = (2/7)*(T(n, 5/2)-(-1)^n) with twice Chebyshev's polynomials of the first kind evaluated at x=5/2: 2*T(n, 5/2) = A003501(n) = ((5+sqrt(21))^n + (5-sqrt(21))^n)/2^n. - Wolfdieter Lang, Oct 18 2004 a(2n) = A003690(n). a(2n+1) = A004253(n)^2. - Alexander Evnin, Mar 11 2012 From Peter Bala, Apr 03 2014: (Start) a(n) = |U(n-1,sqrt(3)*i/2)|^2, where U(n,x) denotes the Chebyshev polynomial of the second kind. a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind. See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End) MAPLE A005386:=-(-1+z)/(z+1)/(z**2-5*z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.] a:= n-> (Matrix([[0, 1, 3]]). Matrix(3, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, 4, -1][i] else 0 fi)^(n))[1, 1]: seq(a(n), n=1..25); # Alois P. Heinz, Aug 05 2008 MATHEMATICA a[n_]:=Module[{n1=1, n2=0}, Do[{n1, n2}={Sqrt*n1+n2, n1}, {n-1}]; n1^2] a[n_]:=Round[((5+Sqrt)/2)^n/7] (CoefficientList[Series[{(x/(1-x*(Sqrt+x)))}, {x, 0, 20}], x])^2 CoefficientList[Series[{x*(1-x)/(x^3-4*x^2-4*x+1)}, {x, 0, 20}], x] CROSSREFS Essentially the same as A003769. First differences of A099025. A100047. Sequence in context: A207836 A005947 A003769 * A053572 A329806 A309915 Adjacent sequences:  A005383 A005384 A005385 * A005387 A005388 A005389 KEYWORD nonn,easy AUTHOR Jean Meeus EXTENSIONS Edited by Peter J. C. Moses, Apr 23 2004 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 29 09:21 EDT 2022. Contains 354910 sequences. (Running on oeis4.)