login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329806
Expansion of Product_{k>=1} 1 / (1 - 6*x^k + x^(2*k))^(1/2).
0
1, 3, 16, 75, 385, 1971, 10473, 56139, 305394, 1674198, 9245506, 51325206, 286210243, 1601822505, 8992732043, 50619114252, 285583525237, 1614439389711, 9142794839933, 51858472602546, 294559269778199, 1675240507900632, 9538522900076376, 54367531265208579, 310179797595736539
OFFSET
0,2
FORMULA
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d * (6 - x^d)^(k/d) ) * x^k / (2*k)).
G.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = g.f. of A001850 (central Delannoy numbers).
a(n) ~ sqrt(2) * (1 + sqrt(2))^(2*n - 1/2) / (c * sqrt(Pi*n)), where c = QPochhammer[1/(1 + sqrt(2))^2] = 0.799142925985081767883272500537236047... - Vaclav Kotesovec, Nov 21 2019
MATHEMATICA
nmax = 24; CoefficientList[Series[Product[1/(1 - 6 x^k + x^(2 k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 24; CoefficientList[Series[Exp[Sum[Sum[d (6 - x^d)^(k/d), {d, Divisors[k]}] x^k/(2 k), {k, 1, nmax}]], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A003769 A005386 A053572 * A371350 A309915 A343117
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 21 2019
STATUS
approved