login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067855 Square of the Euclidean length of the vector of Littlewood-Richardson coefficients of Sum_{lambda |- n} s_lambda^2, where s_lambda are the symmetric Schur functions and the sum runs over all partitions lambda of n. 12
1, 2, 8, 26, 94, 326, 1196, 4358, 16248, 60854, 230184, 874878, 3343614, 12825418, 49368388, 190554410, 737328366, 2858974502, 11106267880, 43215101102, 168398785002, 657070401106, 2566847255572, 10038191414610, 39295007540748 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Original name: "Squared length of sum of s_lambda^2, where s_lambda is a Schur function and lambda ranges over all partitions of n."

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/2, g(n) = 4. - Seiichi Manyama, Apr 22 2018

The symbol "|-" means "is a partition of", cf. MathWorld link and the Geloun & Ramgoolam paper. The Littlewood-Richardson coefficients allow to express a product of two Schur functions as linear combination of Schur functions of the corresponding degree. (The Schur functions symmetric in all n variables correspond to Schur polynomials of partitions extended with 0's to length n.) - M. F. Hasler, Jan 19 2020

See A070933 for similar sums of squares of Littlewood-Richardson coefficients. - M. F. Hasler, Jan 20 2020

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

J. B. Geloun, S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, arXiv preprint arXiv:1307.6490 [hep-th], 2013.

E.W. Weisstein, Partition, MathWorld.com, as of Jan 02 2020.

Wikipedia, Littlewood-Richardson rule, as of Dec 18 2018.

Wikipedia, Schur polynomial, as of Jan 13 2020.

FORMULA

G.f.: 1/sqrt(Product_{i >= 1} (1 - 4*x^i)).

Euler transform of A001868(n)/2. a(n) = Sum_{pi} Product_{m=1..n} binomial(2*p(m), p(m)), where pi runs through all nonnegative solutions of p(1) + 2*p(2) + ... + n*p(n)=n. - Vladeta Jovovic, Mar 25 2006

a(n) ~ 2^(2*n) / sqrt(c*Pi*n), where c = QPochhammer[1/4] = 0.688537537120339... - Vaclav Kotesovec, Apr 22 2018

By definition, a(n) = Sum_{mu |- 2n} c_mu^2 where Sum_{lambda |- n} s_lambda^2 = Sum_{mu |- 2n} c_mu s_mu, where s_lambda are the Schur polynomials (symmetric in 2n variables) and the sums run over all partitions of n resp. 2n. - M. F. Hasler, Jan 19 2020

EXAMPLE

For n=3 the s_lambda^2 summed over all partitions of n and decomposed into a sum of Schur functions yields

    s(6) + 2 s(3,3) + 2 s(4,2) + s(5,1) + 2 s(2,2,2) + 2 s(3,2,1) + s(4,1,1)

    + 2 s(2,2,1,1) + s(3,1,1,1) + s(2,1,1,1,1) + s(1,1,1,1,1,1),

  and the sum of the squares of the coefficients {1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1} gives a(3) = 26.

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1,

      binomial(n+n, n), add(b(j, 1)*b(n-i*j, i-1), j=0..n/i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..33);  # Alois P. Heinz, Aug 24 2019

MATHEMATICA

Table[Tr[(Apply[List,

  Sum[Tr[s @@@ LRRule[\[Lambda], \[Lambda]]],

   {\[Lambda], Partitions[n]}]] /. s[__] -> 1)^2], {n, 1, 10}];

(* with 'LRRule' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb - Wouter Meeussen, Jan 19 2020 *)

PROG

(PARI) A067855_upto(N)=Vec(1/sqrt(prod(i=1, N-1, 1-4*'x^i+O('x^N)))) \\ M. F. Hasler, Jan 23 2020

CROSSREFS

Cf. A001868.

List of partitions: A036037, A080577, A181317, A330370.

Cf. A070933 (Sum_{lambda,mu,nu} (c^{lambda}_{mu,nu})^2, |mu| = |nu| = n).

Cf. A003040 (maximum number of standard tableaux of the Ferrers diagrams of the partitions of n).

Sequence in context: A052543 A026638 A307401 * A301699 A129368 A281345

Adjacent sequences:  A067852 A067853 A067854 * A067856 A067857 A067858

KEYWORD

easy,nonn

AUTHOR

Richard Stanley, Feb 15 2002

EXTENSIONS

More terms from Vladeta Jovovic, Mar 25 2006

Name edited by M. F. Hasler following obervations by Wouter Meeussen, Jan 17 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 19:18 EST 2021. Contains 341756 sequences. (Running on oeis4.)