login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307401
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} k*x^k*A(x)^k/(1 + x^k*A(x)^k).
3
1, 1, 2, 8, 26, 92, 360, 1416, 5698, 23513, 98346, 416418, 1783144, 7704322, 33546344, 147071592, 648636050, 2875822121, 12810531924, 57306505152, 257330920910, 1159517118330, 5241137123470, 23758569938458, 107983949179512, 491985193384077, 2246564114646650
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = (23 + theta_2(x*A(x))^4 + theta_3(x*A(x))^4)/24.
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} A000593(k)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} A000593(k)*x^k)).
a(n) ~ c * d^n / n^(3/2), where d = 4.83361837854808845493127190842423391826598301272368919050344408629988519... and c = 0.506244425594072156224012562189085656331596921281799036166665... - Vaclav Kotesovec, Sep 27 2023
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 92*x^5 + 360*x^6 + 1416*x^7 + 5698*x^8 + 23513*x^9 + 98346*x^10 + ...
MATHEMATICA
terms = 27; A[_] = 0; Do[A[x_] = 1 + Sum[k x^k A[x]^k/(1 + x^k A[x]^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 27; A[_] = 0; Do[A[x_] = 1 + Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 27; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k, {k, 1, terms}]), {x, 0, terms}], x], x]
(* Calculation of constants {d, c} : *) {1/r, Sqrt[3*s/(Pi*(3*EllipticTheta[2, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s]^2 + 3*EllipticTheta[3, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]^2 + EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][2, 0, r*s] + EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][3, 0, r*s]))]/r} /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 07 2019
STATUS
approved