login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192206
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*A(x)^n/(1 - x^n*A(x)^n).
5
1, 1, 3, 9, 32, 118, 460, 1844, 7587, 31804, 135433, 584092, 2546250, 11201310, 49663816, 221701658, 995621590, 4494862920, 20388491423, 92872814115, 424665159560, 1948516758192, 8968647197842, 41399782218408, 191608577837136
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} tau(n)*x^n*A(x)^n, where tau(n) = the number of divisors of n (A000005).
G.f. satisfies: G(x) = A(x/G(x)) where G(x) = 1 + Sum_{n>=1} x^n/(1 - x^n) is a g.f. for A000005.
a(n) ~ c * d^n / n^(3/2), where d = 4.92231207163377242376... and c = 0.58002108600295682... - Vaclav Kotesovec, Sep 28 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 32*x^4 + 118*x^5 + 460*x^6 +...
which satisfies:
A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)^2/(1-x^2*A(x)^2) + x^3*A(x)^3/(1-x^3*A(x)^3) +...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = 1 + Sum[x^k*A[x]^k/(1 - x^k*A[x]^k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
(* Calculation of constant d: *) val = r /. FindRoot[{Log[1 - r*s] + QPolyGamma[0, 1, r*s] == (s-1)* Log[r*s], r*(1/(-1 + r*s) + Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]) == Log[r*s] + (s-1)/s}, {r, 1/5}, {s, 2}, WorkingPrecision -> 30] // Quiet; N[1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* Vaclav Kotesovec, Sep 28 2023 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^m/(1-x^m*A^m+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, sigma(m, 0)*x^m*A^m+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 25 2011
STATUS
approved