login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192204
G.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^4*A(x)^k) * x^n/n ).
0
1, 2, 13, 109, 1099, 12283, 147620, 1869346, 24633344, 334916467, 4669887745, 66481991644, 963096090267, 14160279233964, 210870471771803, 3175275874056722, 48281516978747396, 740504452581897112, 11444972742343813815
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 13*x^2 + 109*x^3 + 1099*x^4 + 12283*x^5 +...
which satisfies:
log(A(x)) = (1 + A(x))*x + (1 + 16*A(x) + A(x)^2)*x^2/2 + (1 + 81*A(x) + 81*A(x)^2 + A(x)^3)*x^3/3 + (1 + 256*A(x) + 1296*A(x)^2 + 256*A(x)^3 + A(x)^4)*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^4*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
CROSSREFS
Cf. variants: A007863, A192131.
Sequence in context: A264621 A367648 A245806 * A176932 A258916 A052444
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 25 2011
STATUS
approved