login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192207
G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n*x^n/(1 - x^n).
3
1, 1, 3, 8, 25, 79, 268, 931, 3340, 12221, 45525, 171932, 657002, 2535167, 9864727, 38663036, 152491244, 604788048, 2410462518, 9649584165, 38782437824, 156428161276, 633003302363, 2569122403034, 10455470193615, 42656724160734
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n * Sum_{d|n} A(x)^d.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 25*x^4 + 79*x^5 + 268*x^6 +...
which satisfies
A(x) = 1 + A(x)*x/(1-x) + A(x)^2*x^2/(1-x^2) + A(x)^3*x^3/(1-x^3) +...
The g.f. A = A(x) also satisfies
A = 1 + x*A + x^2*(A + A^2) + x^3*(A + A^3) + x^4*(A + A^2 + A^4) + x^5*(A + A^5) + x^6*(A + A^2 + A^3 + A^6) + x^7*(A + A^7) + x^8*(A + A^2 + A^4 + A^8) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^m/(1-x^m+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*sumdiv(m, d, A^d))+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A050383 A060404 A192905 * A289593 A101490 A148793
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 25 2011
STATUS
approved