OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..240
C. G. Bower, Transforms (2)
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 773
N. J. A. Sloane, Transforms
FORMULA
G.f. (with offset 0) satisfies: A(x) = 1/Product_{n>=1} (1 - x^n*A(x^n)). - Paul D. Hanna, Sep 28 2011
Shifts left under transform T where Ta is EULER(CIK(a)).
a(n) ~ c * d^n / n^(3/2), where d = 4.313133937842504228... and c = 0.153549235191409889... - Vaclav Kotesovec, Nov 05 2021
MATHEMATICA
m = 26; A[_] = 0;
Do[A[x_] = 1/Product[1 - x^n A[x^n], {n, 1, m}] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*subst(A, x, x^k+x*O(x^n))))); polcoeff(A, n)} /* Paul D. Hanna */
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Nov 15 1999
STATUS
approved