login
A052872
A simple grammar.
1
1, 1, 3, 9, 32, 117, 460, 1850, 7680, 32467, 139631, 608280, 2679881, 11916492, 53417407, 241118245, 1095030281, 4999847240, 22938576846, 105690791104, 488860041249, 2269080989966, 10565660913109, 49340702712984, 231031730790560
OFFSET
0,3
FORMULA
G.f. A(x) satisfies [from Paul D. Hanna, Oct 16 2013]:
(1) A(x) = exp( Sum_{n>=1} x^n/n * A(x^n)/(1 - x^n*A(x^n)) );
(2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{d|n} d*A(x^(n/d))^d ).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 32*x^4 + 117*x^5 + 460*x^6 +...
where
log(A(x)) = x*A(x)/(1-x*A(x)) + x^2/2*A(x^2)/(1-x^2*A(x^2)) + x^3/3*A(x^3)/(1-x^3*A(x^3)) + x^4/4*A(x^4)/(1-x^4*A(x^4)) + x^5/5*A(x^5)/(1-x^5*A(x^5)) + x^6/6*A(x^6)/(1-x^6*A(x^6)) +... - Paul D. Hanna, Oct 16 2013
MAPLE
spec := [S, {C=Sequence(B, 1 <= card), S=Set(C), B=Prod(Z, S)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(k=1, n, x^k/k*subst(A, x, x^k)/(1-x^k*subst(A, x, x^k+x*O(x^n)) )))); polcoeff(A, n)} \\ Paul D. Hanna, Oct 16 2013
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(k=1, n, x^k/k*sumdiv(k, d, d*subst(A, x, x^(k/d) +x*O(x^n))^d)))); polcoeff(A, n)} \\ Paul D. Hanna, Oct 16 2013
CROSSREFS
Sequence in context: A194353 A148985 A148986 * A122452 A192206 A091841
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved