login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052873 E.g.f. satisfies A(x) = exp(x*A(x)/(1 - x*A(x))). 12
1, 1, 5, 46, 629, 11496, 263857, 7301680, 236748969, 8806142080, 369714769181, 17296339048704, 892335712777885, 50333180563864576, 3081739132775658825, 203555129140352505856, 14428195498061848405073 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
LINKS
R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015
FORMULA
E.g.f.: exp(RootOf(exp(_Z)*x*_Z+exp(_Z)*x-_Z))
1 = Sum_{n>=0} a(n)*exp((n+1)*x/(x-1))*x^n/n!. - Vladeta Jovovic, Jul 20 2005
a(n) = Sum_{k=0..n} (n+1)^(k-1)*n!/k!*binomial(n-1,k-1). - Vladeta Jovovic, Jul 02 2006
E.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n! / (1-x*A(x))^n. - Paul D. Hanna, Sep 08 2012
Equivalently:
E.g.f. satisfies: A(x) = exp( x*A(x)/(1 - x*A(x)) ). - Olivier Gérard, Dec 29 2013
a(n) ~ (sqrt(5)-1) * 2^(n-1/2) * n^(n-1) * exp((sqrt(5)-1 + (sqrt(5)-3)*n)/2) / (5^(1/4) * (3-sqrt(5))^(n+1/2)). - Vaclav Kotesovec, Jan 08 2014
a(n) = n!*hypergeom([1-n],[2],-n-1) for n>=1. - Peter Luschny, Apr 20 2016
MAPLE
spec := [S, {C=Sequence(B, 1 <= card), S=Set(C), B=Prod(Z, S)}, labeled]:
seq(combstruct[count](spec, size=n), n=0..20);
# Alternatively:
a := n -> `if`(n=0, 1, n!*hypergeom([1-n], [2], -n-1)):
seq(simplify(a(n)), n=0..16); # Peter Luschny, Apr 20 2016
MATHEMATICA
Table[Sum[(n+1)^(k-1)*n!/k!*Binomial[n-1, k-1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 08 2014 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n, (n+1)^(k-1)*n!/k!*binomial(n-1, k-1)))} \\ Paul D. Hanna, Sep 08 2012
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (m+1)^(m-1)*x^m/m!/(1-x*A+x*O(x^n))^m)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Sep 08 2012
CROSSREFS
Sequence in context: A367154 A121631 A071214 * A052894 A363355 A292408
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Vaclav Kotesovec, Jan 08 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 18:28 EST 2023. Contains 367660 sequences. (Running on oeis4.)