The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052873 E.g.f. satisfies A(x) = exp(x*A(x)/(1 - x*A(x))). 12
 1, 1, 5, 46, 629, 11496, 263857, 7301680, 236748969, 8806142080, 369714769181, 17296339048704, 892335712777885, 50333180563864576, 3081739132775658825, 203555129140352505856, 14428195498061848405073 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Previous name was: A simple grammar. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..357 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 844 R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015 FORMULA E.g.f.: exp(RootOf(exp(_Z)*x*_Z+exp(_Z)*x-_Z)) 1 = Sum_{n>=0} a(n)*exp((n+1)*x/(x-1))*x^n/n!. - Vladeta Jovovic, Jul 20 2005 a(n) = Sum_{k=0..n} (n+1)^(k-1)*n!/k!*binomial(n-1,k-1). - Vladeta Jovovic, Jul 02 2006 E.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n! / (1-x*A(x))^n. - Paul D. Hanna, Sep 08 2012 Equivalently: E.g.f. satisfies: A(x) = exp( x*A(x)/(1 - x*A(x)) ). - Olivier Gérard, Dec 29 2013 a(n) ~ (sqrt(5)-1) * 2^(n-1/2) * n^(n-1) * exp((sqrt(5)-1 + (sqrt(5)-3)*n)/2) / (5^(1/4) * (3-sqrt(5))^(n+1/2)). - Vaclav Kotesovec, Jan 08 2014 a(n) = n!*hypergeom([1-n],[2],-n-1) for n>=1. - Peter Luschny, Apr 20 2016 MAPLE spec := [S, {C=Sequence(B, 1 <= card), S=Set(C), B=Prod(Z, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); # Alternatively: a := n -> `if`(n=0, 1, n!*hypergeom([1-n], [2], -n-1)): seq(simplify(a(n)), n=0..16); # Peter Luschny, Apr 20 2016 MATHEMATICA Table[Sum[(n+1)^(k-1)*n!/k!*Binomial[n-1, k-1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 08 2014 *) PROG (PARI) {a(n)=if(n==0, 1, sum(k=0, n, (n+1)^(k-1)*n!/k!*binomial(n-1, k-1)))} \\ Paul D. Hanna, Sep 08 2012 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (m+1)^(m-1)*x^m/m!/(1-x*A+x*O(x^n))^m)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Sep 08 2012 CROSSREFS Cf. A052868, A088690, A161630. Sequence in context: A367154 A121631 A071214 * A052894 A363355 A292408 Adjacent sequences: A052870 A052871 A052872 * A052874 A052875 A052876 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS New name using e.g.f., Vaclav Kotesovec, Jan 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:28 EST 2023. Contains 367660 sequences. (Running on oeis4.)