login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052873 E.g.f. satisfies: A(x) = exp(x*A(x)/(1 - x*A(x))). 1
1, 1, 5, 46, 629, 11496, 263857, 7301680, 236748969, 8806142080, 369714769181, 17296339048704, 892335712777885, 50333180563864576, 3081739132775658825, 203555129140352505856, 14428195498061848405073 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Previous name was: A simple grammar.

LINKS

Table of n, a(n) for n=0..16.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 844

R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015

FORMULA

E.g.f.: exp(RootOf(exp(_Z)*x*_Z+exp(_Z)*x-_Z))

1 = Sum_{n>=0} a(n)*exp((n+1)*x/(x-1))*x^n/n!. - Vladeta Jovovic, Jul 20 2005

a(n) = Sum_{k=0..n} (n+1)^(k-1)*n!/k!*binomial(n-1,k-1). - Vladeta Jovovic, Jul 02 2006

E.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n! / (1-x*A(x))^n. - Paul D. Hanna, Sep 08 2012

Equivalently:

E.g.f. satisfies: A(x) = exp( x*A(x)/(1 - x*A(x)) ). - Olivier Gérard, Dec 29 2013

a(n) ~ (sqrt(5)-1) * 2^(n-1/2) * n^(n-1) * exp((sqrt(5)-1 + (sqrt(5)-3)*n)/2) / (5^(1/4) * (3-sqrt(5))^(n+1/2)). - Vaclav Kotesovec, Jan 08 2014

a(n) = n!*hypergeom([1-n],[2],-n-1) for n>=1. - Peter Luschny, Apr 20 2016

MAPLE

spec := [S, {C=Sequence(B, 1 <= card), S=Set(C), B=Prod(Z, S)}, labeled]:

seq(combstruct[count](spec, size=n), n=0..20);

# Alternatively:

a := n -> `if`(n=0, 1, n!*hypergeom([1-n], [2], -n-1)):

seq(simplify(a(n)), n=0..16); # Peter Luschny, Apr 20 2016

MATHEMATICA

Table[Sum[(n+1)^(k-1)*n!/k!*Binomial[n-1, k-1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 08 2014 *)

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=0, n, (n+1)^(k-1)*n!/k!*binomial(n-1, k-1)))} \\ Paul D. Hanna, Sep 08 2012

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (m+1)^(m-1)*x^m/m!/(1-x*A+x*O(x^n))^m)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Sep 08 2012

CROSSREFS

Cf. A088690.

Sequence in context: A167559 A121631 A071214 * A052894 A292408 A295552

Adjacent sequences:  A052870 A052871 A052872 * A052874 A052875 A052876

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

New name using e.g.f., Vaclav Kotesovec, Jan 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 17:45 EDT 2020. Contains 337444 sequences. (Running on oeis4.)