login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292408
Number of 3-regular maps with 2n vertices on the torus, up to orientation-preserving isomorphisms.
6
1, 5, 46, 669, 11096, 196888, 3596104, 66867564, 1258801076, 23925376862, 458284630844, 8835496339452, 171286387714900, 3336406717216564, 65257828878990784, 1281049596756607960, 25228921286295314736, 498287389997552607290, 9866927329534881618772, 195837489338961245840240
OFFSET
1,2
LINKS
E. Krasko, A. Omelchenko, Enumeration of r-regular Maps on the Torus. Part I: Enumeration of Rooted and Sensed Maps, arXiv preprint arXiv:1709.03225[math.CO], 2017.
E. Krasko, A. Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics, Volume 342, Issue 2, February 2019, pp. 584-599.
Riccardo Murri, Fatgraph algorithms and the homology of the Kontsevich complex, arXiv preprint arXiv:1202.1820, 2012.
CROSSREFS
3-regular maps on the sphere: A112948.
Cf. A292971 (4-regular), A292972 (5-regular), A292974 (6-regular).
Sequence in context: A052873 A052894 A363355 * A339229 A295552 A066998
KEYWORD
nonn
AUTHOR
Evgeniy Krasko, Sep 15 2017
STATUS
approved