login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052874
E.g.f.: -x/(-1+x)*(exp(-x/(-1+x))-1).
0
0, 0, 2, 15, 112, 925, 8556, 88249, 1007056, 12612681, 172092340, 2541367741, 40385290584, 687120886621, 12461362029676, 239945693311185, 4888311943969696, 105038684764873489, 2373935421890157156, 56288808913905658981, 1397063652149884343080, 36219993180755369947941
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
FORMULA
E.g.f.: -x/(-1+x)*(exp(-x/(-1+x))-1)
D-finite Recurrence: {a(1)=0, a(0)=0, a(2)=2, (-n^4-6*n^3-11*n^2-6*n)*a(n)+(3*n^3+18*n^2+33*n+18)*a(n+1)+(-3*n^2-14*n-15)*a(n+2)+(n+2)*a(n+3)=0}
a(n) ~ n^(n+1/4)*exp(2*sqrt(n)-n-1/2)/sqrt(2). - Vaclav Kotesovec, Sep 30 2013
a(n) = n!*(LaguerreL(n - 1, -1) - 1) for n >= 1. - Peter Luschny, Mar 28 2023
MAPLE
spec := [S, {C=Sequence(Z, 1 <= card), B=Set(C, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
# Alternative:
seq(`if`(n=0, 0, simplify(n!*(LaguerreL(n - 1, -1) - 1))), n = 0..18); # Peter Luschny, Mar 28 2023
MATHEMATICA
CoefficientList[Series[-x/(-1+x)*(E^(-x/(-1+x))-1), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
CROSSREFS
Sequence in context: A342963 A022026 A026113 * A360432 A376327 A074622
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name, using e.g.f., from Vaclav Kotesovec, Sep 30 2013
STATUS
approved