login
A052870
A simple grammar.
1
1, 1, 2, 6, 15, 44, 128, 386, 1179, 3679, 11601, 37030, 119262, 387325, 1266647, 4168264, 13791565, 45856091, 153134306, 513403575, 1727395042, 5830866601, 19740613869, 67014421326, 228066659185, 777961702283, 2659398743509, 9109015516017, 31258117755635
OFFSET
0,3
FORMULA
From Seiichi Manyama, Jun 07 2023: (Start)
Conjectures: G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * x^k/(k * (1 - x^k)) ).
A(x) = Sum_{k>=0} a(k) * x^k = Product_{j>=1} Product_{k>=0} (1+x^(j+k))^a(k). (End)
MAPLE
spec := [S, {C=Sequence(Z, 1 <= card), S=PowerSet(B), B=Prod(C, S)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
CROSSREFS
Cf. A052855.
Sequence in context: A148439 A151515 A264746 * A293743 A360274 A001444
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Alois P. Heinz, Mar 16 2016
STATUS
approved