login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052868
Expansion of e.g.f. LambertW(x/(-1+x))/x*(-1+x).
25
1, 1, 5, 40, 449, 6556, 118507, 2561518, 64540625, 1859206600, 60309007091, 2176222795594, 86488677518905, 3754431762036892, 176771908657345835, 8973513955735900246, 488586200931213192353, 28404347922603101834512
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
LINKS
FORMULA
E.g.f.: LambertW(x/(-1+x))/x*(-1+x).
a(n) = Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*(k+1)^(k-1). - Vladeta Jovovic, Sep 17 2003
a(n) ~ sqrt((exp(1)+1)*exp(1))*n^(n-1)*(1+exp(-1))^n. - Vaclav Kotesovec, Sep 29 2013
E.g.f. A(x) satisfies A(x) = exp( x*A(x)/(1-x) ) - Olivier Gérard, Dec 28 2013
E.g.f.: exp( -LambertW(-x/(1-x)) ). - Seiichi Manyama, Mar 01 2023
MAPLE
spec := [S, {C=Sequence(Z, 1 <= card), S=Set(B), B=Prod(C, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[LambertW[x/(-1+x)]/x*(-1+x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
nmax = 20; A[_] = 0; Do[A[x_] = Product[Exp[x^k*A[x]], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 01 2024 *)
PROG
(Maxima) makelist(if n=0 then 1 else sum(n!/k!*binomial(n-1, k-1)*(k+1)^(k-1), k, 0, n), n, 0, 17); /* Bruno Berselli, May 25 2011 */
(PARI) x='x+O('x^50); Vec(serlaplace(lambertw(x/(-1+x))/x*(-1+x))) \\ G. C. Greubel, Nov 12 2017
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x))))) \\ Seiichi Manyama, Mar 01 2023
CROSSREFS
Sequence in context: A000359 A121886 A282190 * A292405 A094574 A090362
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Joerg Arndt, Sep 30 2013
STATUS
approved