login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282190 E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function. 11
1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Stirling transform of A000312.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..375

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

Eric Weisstein's MathWorld, Stirling Transform

FORMULA

a(0) = 1, a(n) = Sum_{k=1..n} Stirling2(n,k)*k^k.

a(n) ~ n^n / (sqrt(1+exp(1)) * (log(1+exp(-1)))^(n+1/2) * exp(n)). - Vaclav Kotesovec, Feb 17 2017

EXAMPLE

E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...

MAPLE

b:= proc(n, m) option remember;

`if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))

end:

a:= n-> b(n, 0):

seq(a(n), n=0..23); # Alois P. Heinz, Aug 03 2021

MATHEMATICA

Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]

Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]

PROG

(PARI) x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017

CROSSREFS

Cf. A000312, A000670, A038052, A048802, A052880, A308490, A308491.

Sequence in context: A034000 A000359 A121886 * A052868 A292405 A094574

Adjacent sequences: A282187 A282188 A282189 * A282191 A282192 A282193

KEYWORD

nonn,nice

AUTHOR

Ilya Gutkovskiy, Feb 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 15:49 EST 2022. Contains 358644 sequences. (Running on oeis4.)