|
|
A282189
|
|
T(n,k)=Number of nXk 0..2 arrays with no element equal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
|
|
5
|
|
|
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 8, 44, 8, 0, 0, 104, 2919, 2919, 104, 0, 0, 1222, 122866, 418178, 122866, 1222, 0, 0, 13552, 4446172, 48031921, 48031921, 4446172, 13552, 0, 0, 144784, 148868304, 4907541118, 15775532484, 4907541118, 148868304, 144784, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,12
|
|
COMMENTS
|
Table starts
.0........0............0..............0................0................0
.0........0............1..............8..............104.............1222
.0........1...........44...........2919...........122866..........4446172
.0........8.........2919.........418178.........48031921.......4907541118
.0......104.......122866.......48031921......15775532484....4628006363340
.0.....1222......4446172.....4907541118....4628006363340.3903552450233444
.0....13552....148868304...469203486998.1272857909584052
.0...144784...4745726158.42928015621172
.0..1506870.146320129628
.0.15382464
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..71
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 16*a(n-1) -48*a(n-2) -116*a(n-3) -160*a(n-4) -96*a(n-5) -36*a(n-6) for n>9
k=3: [order 30] for n>33
|
|
EXAMPLE
|
Some solutions for n=3 k=4
..0..1..0..0. .0..1..1..0. .0..1..0..0. .0..0..1..0. .0..1..1..1
..2..0..0..1. .1..2..2..2. .1..2..0..0. .0..0..0..1. .0..1..1..2
..0..2..0..0. .1..2..2..2. .1..2..0..0. .1..0..1..0. .1..1..0..0
|
|
CROSSREFS
|
Sequence in context: A199321 A346198 A144039 * A210125 A044110 A044491
Adjacent sequences: A282186 A282187 A282188 * A282190 A282191 A282192
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Feb 08 2017
|
|
STATUS
|
approved
|
|
|
|