%I
%S 0,0,0,0,0,0,0,1,1,0,0,8,44,8,0,0,104,2919,2919,104,0,0,1222,122866,
%T 418178,122866,1222,0,0,13552,4446172,48031921,48031921,4446172,13552,
%U 0,0,144784,148868304,4907541118,15775532484,4907541118,148868304,144784,0
%N T(n,k)=Number of nXk 0..2 arrays with no element equal to more than four of its kingmove neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
%C Table starts
%C .0........0............0..............0................0................0
%C .0........0............1..............8..............104.............1222
%C .0........1...........44...........2919...........122866..........4446172
%C .0........8.........2919.........418178.........48031921.......4907541118
%C .0......104.......122866.......48031921......15775532484....4628006363340
%C .0.....1222......4446172.....4907541118....4628006363340.3903552450233444
%C .0....13552....148868304...469203486998.1272857909584052
%C .0...144784...4745726158.42928015621172
%C .0..1506870.146320129628
%C .0.15382464
%H R. H. Hardin, <a href="/A282189/b282189.txt">Table of n, a(n) for n = 1..71</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1)
%F k=2: a(n) = 16*a(n1) 48*a(n2) 116*a(n3) 160*a(n4) 96*a(n5) 36*a(n6) for n>9
%F k=3: [order 30] for n>33
%e Some solutions for n=3 k=4
%e ..0..1..0..0. .0..1..1..0. .0..1..0..0. .0..0..1..0. .0..1..1..1
%e ..2..0..0..1. .1..2..2..2. .1..2..0..0. .0..0..0..1. .0..1..1..2
%e ..0..2..0..0. .1..2..2..2. .1..2..0..0. .1..0..1..0. .1..1..0..0
%K nonn,tabl
%O 1,12
%A _R. H. Hardin_, Feb 08 2017
