login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308491
a(0) = 1, a(n) = Sum_{k=1..n} stirling2(n,k) * k^(3*k).
3
1, 1, 65, 19876, 16895763, 30685843321, 102018812632786, 560682901512212459, 4738032814084465062121, 58320000513552476843995786, 1002620283226568243192938115197, 23280221638971518379191182864465213, 710336441472841166799952152725333251616
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n^(3*n).
E.g.f.: Sum_{k>=0} (k^3 * (exp(x) - 1))^k / k!. - Seiichi Manyama, Feb 04 2022
MATHEMATICA
Join[{1}, Table[Sum[k^(3*k)*StirlingS2[n, k], {k, 1, n}], {n, 1, 15}]]
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k^3*(exp(x)-1))^k/k!))) \\ Seiichi Manyama, Feb 04 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 31 2019
STATUS
approved