The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084225 Numerators of successive approximations to zeta(3) = Sum_{k>0} 1/k^3, using Zeilberger's formula with s=3. 4
 65, 25243, 211601801729, 41606201661907, 26719502723174333, 21470414849401610158757, 1743934446142768167359788693, 34556860353606738134995908106747 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..229 D. Zeilberger, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998. FORMULA a(n) = numerator( Sum_{k=0..n} ( (1/72)*(-1)^k*(5265*k^4 +13878*k^3 +13761*k^2+6120*k+1040)/(binomial(3*k,k)*binomial(4*k,k)*(4*k+1)*(4*k+3)*(k+1)*(3*k+1)^2*(3*k+2)^2) ) ). - G. C. Greubel, Oct 08 2018 MAPLE a:=n->add((1/72)*(-1)^k*(5265*k^4+13878*k^3+13761*k^2+6120*k+1040)/(binomial(3*k, k)*binomial(4*k, k)*(4*k+1)*(4*k+3)*(k+1)*(3*k+1)^2*(3*k+2)^2), k=0..n): seq(numer(a(n)), n=0..10); # Muniru A Asiru, Oct 09 2018 PROG (PARI) for(n=0, 10, print1(numerator(sum(k=0, n, 1/72*(-1)^k*(5265*k^4 +13878*k^3+13761*k^2+6120*k+1040)/binomial(3*k, k)/binomial(4*k, k)/(4*k+1)/(4*k+3)/(k+1)/(3*k+1)^2/(3*k+2)^2))", ")) (MAGMA) [Numerator((&+[(1/72)*(-1)^k*(5265*k^4 +13878*k^3 +13761*k^2 +6120*k+1040)/(Binomial(3*k, k)*Binomial(4*k, k)*(4*k+1)*(4*k+3)*(k+1)*(3*k+1)^2*(3*k+2)^2): k in [0..n]])): n in [0..30]]; // G. C. Greubel, Oct 08 2018 (GAP) List(List([0..10], n->Sum([0..n], k->(1/72)*(-1)^k*(5265*k^4+13878*k^3+13761*k^2+6120*k+1040)/(Binomial(3*k, k)*Binomial(4*k, k)*(4*k+1)*(4*k+3)*(k+1)*(3*k+1)^2*(3*k+2)^2))), NumeratorRat); # Muniru A Asiru, Oct 09 2018 CROSSREFS Denominators are in A084226, decimal expansion is in A002117. Cf. A084223 (s=2). Sequence in context: A308697 A283580 A308491 * A278550 A177652 A278795 Adjacent sequences:  A084222 A084223 A084224 * A084226 A084227 A084228 KEYWORD nonn,frac AUTHOR Ralf Stephan, May 19 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 02:18 EDT 2021. Contains 343072 sequences. (Running on oeis4.)