login
A308488
a(n) is the smallest n-gonal pyramidal number greater than 1 which is also n-gonal; a(n) = 0 when one does not exist.
0
10, 4900, 0, 946, 0, 1045, 0, 175, 23725, 0, 0, 441, 0, 0, 975061, 0, 0, 3578401, 0, 0, 10680265, 0, 0, 27453385, 0, 0, 63016921, 23001, 0, 132361021, 0, 0, 258815701, 0, 0, 477132085, 0, 0, 55202400, 0, 245905, 1408778281, 0, 0, 2286380881, 0, 0, 314755, 0, 0
OFFSET
3,1
COMMENTS
a(n) is the smallest n-gonal number, N, such that, for some m > 1, N is the sum of the first m n-gonal numbers, 0 when one does not exist.
For n > 5, if n == 2 (mod 3), then a(n) > 0 and a(n) <= A080851(n - 2,((n-2)^2)/3 - 3), but there are cases where a(n) > 0 and n !== 2 (mod 3), e.g., a(10).
LINKS
James Grime and Brady Haran, The Best Way to Pack Spheres, Numberphile video (2018).
M. Kaneko and K. Tachibana, When is a Polygonal Pyramid Number Again Polygonal?, Rocky Mountain Journal of Mathematics, 32 (2002).
Matt Parker and Brady Haran, 90,525,801,730 Cannon Balls, Numberphile video (2019).
PROG
(PARI) A308488_vec(lim, J=10^6)={my(
pyramid(s, n)=(3*n^2 + n^3*(s-2)-n*(s-5))/6,
check(s)=j=if(lift(Mod(s, 3))==2, ((s-2)^2)/3-2, J); m=3; while(m<=j, if(ispolygonal(pyramid(s, m), s), return(pyramid(s, m)), m++)); 0);
vector(lim, s, check(s+2))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Davis Smith, Aug 22 2019
STATUS
approved